
ML4PG:MachineLearning forProofGeneral
Ekaterina Komendantskaya and Jónathan Heras

http://www.computing.dundee.ac.uk/staff/katya/ML4PG/

Interactive Theorem Provers (ITPs)
...are programming languages applied for:

F software verification in industry:

• ARM microprocessor: 20, 000 lines of code;
• verified C compiler: 50, 000 lines of code;
• seL4 microkernel: 200, 000 lines of code.

F and formalisation of mathematics:

• Four Colour theorem: 60, 000 lines of code;
• Feit-Thompson theorem: 170, 000 lines;
• Flyspeck project: 325, 000 lines of code.

Challenges
• Manual handling of various proofs, strategies
and libraries becomes difficult;
• Team-development is hard, especially since ITPs
are sensitive to user notation;
• Comparison of proofs and proof similarities
across libraries or in one big library is hard.

Our solution: ML4PG
Proof General [1] is a user interface for several ex-
isting ITPs. ML4PG [4] is a machine-learning ex-
tension to Proof General [1] that:
• finds common proof-patterns in proofs across
various scripts, libraries, users and notations;
• provides proof-hints, especially in industrial
cases where routine similar cases are frequent, and
effort is distributed across several programmers.

ML4PG session for Coq/SSReflect

Step 1: Feature extraction
• ML4PG works on the background of Proof Gen-
eral, and extracts statistical features from interac-
tive proofs in Coq [2] and SSReflect [3];
• The features reflect shapes of lemmas, structure
of proofs, and patterns of user interaction with the
ITP.
• Proof trace method captures statistical relation
between several proof steps.

Step 2: Machine learning tools
• As higher-order proofs in general can take an in-
finite variety of shapes and sizes, ML4PG does not
use any a priori given training labels.
• it uses unsupervised learning (clustering) algo-
rithms implemented in MATLAB and Weka; and
allows the user to adjust learning parameters, e.g.
the size and proximity of clusters.
• The output shows families of related proofs.

Step 3: Interaction with ML4PG
• ML4PG automatically sends the gathered statis-
tics to a chosen machine-learning interface and
triggers execution of a clustering algorithm of the
user’s choice;
• it does some gentle post-processing of the results
given by the machine-learning tool, and displays
families of related proofs to the user.

ML4PG overview

Proof General interface MATLAB, WekaML4PG

feature extraction

proof families

Interactive Prover:
Coq, SSReflect

Clustering algorithms:
k-means, Gaussian, . . .

Case Study: Verification of Java Virtual Machine with ML4PG
Java Virtual Machine (JVM) is a stack-based abstract machine which can execute Java bytecode.
We modelled a subset of the JVM in Coq, verifying the interpreter for JVM programs. This work is inspired
by the ACL2 proofs about JVMs [5].

Case study: ML4PG Role in Proof Pattern Discovery
As part of JVM verification process, we needed to prove in Coq the following lemma:

Lemma 1 (Factorial JVM lemma) ∀n ∈ N, running the bytecode associated with the factorial program with n as
input, the Coq JVM produces a state which contains n! on top of the stack.

After processing the proof statistics of 150 lemmas in the library, ML4PG correctly suggested to reuse the
proof strategy from similar (already proven) lemmas concerning different operations:
? multiplication JVM lemma ?? power JVM lemma ? ? ? exponentiation JVM lemma

Discovered Proof Families
Proof hints provided by ML4PG for the proof of
Lemma 1: all proof families below contain proofs
of already proven ?, ??, and ? ? ?.

Clustering algorithm: g = 1 g = 2 g = 3
Gaussian 9 0 0

K-means (MATLAB) 20 3 3
K-means (Weka) 29 10 2

FarthestFirst 27 24 0

Size of dataset: ≈ 150 lemmas. The granularity parameter g ranges
from 1 (producing big and general clusters) to 5 (producing small and
precise clusters).

Benefits of ML4PG
• ... can be switched on/off on user’s demand;
• ... does not assume any machine-learning knowl-
edge from the user;
• ... allows the user to make choices regarding ap-
proach to levels of proofs, size and granularity of
clusters, and particular statistical algorithms;
• ...tolerant to mixing and matching different proof
libraries and different notation used in proofs
across different users.

References
[1] D. Aspinall. Proof General: A Generic Tool for Proof Develop-

ment. In TACAS’00, LNCS 1785, pp. 38–43. 2000.

[2] Y. Bertot and P. Castéran. Coq’Art: the Calculus of Construc-
tions. Springer-Verlag. 2004.

[3] G. Gonthier and A. Mahboubi. An introduction to small scale
reflection. J. of Formalized Reasoning, 3(2):95–152. 2010.

[4] E. Komendantskaya, J. Heras, and G. Grov. Machine learn-
ing in Proof General: interfacing interfaces. To be published in
EPTCS Post-proceedings of UITP’12. 2013.

[5] J S. Moore. Models, Algebras and Logic of Engineering Soft-
ware, chapter Proving Theorems about Java and the JVM
with ACL2, pages 227–290. IOS Press, 2004.

1


