A symbolic approach to abstract algebra
in HOL Light

Marco Maggesi**!

DiMal - Dipartimento di Matematica e Informatica “U. Dini”
Universita degli Studi Firenze, Italy
http://www.math.unifi.it/~maggesi/

Abstract. Formalising algebraic structures (groups, rings, fields, vector
spaces, lattices, . ..) is known to be challenging task which is often under-
taken by exploiting various kind of extra-logical mechanisms (axiomatic
classes, modules, locales, coercions, ...) provided by most modern theo-
rem pProvers.

We want to explore an alternative strategy, where algebraic structures
are implemented via a deep embedding of mathematical formulas and
are managed as first class objects in the HOL theory.

Along the way, we provide a mechanism of generalised conversions, which
extends Paulson’s conversions by allowing to compute with equivalence
relations. We developed generalised conversions to support rewriting in
our system, but they can be used independently and may have an interest
in its own.

Keywords: Mechanisation of mathematics, Algebraic Structures, HOL
Light

1 Introduction

We aim to implement a large class of algebraic structures in HOL Light: monoids,
groups, rings, fields, vector spaces, lattices, etc. These structures are typically
presented by an abstract syntax (the allowed formulae of the theory) and a set
of axioms (the symbolic manipulation permitted).

For instance, a group has a unit ‘e’, a multiplication ‘x - ¢’ and an inverse
‘z~1" obeying to the identities

— associatitvity: (z-y) -z = (z-y) - z;
— left identity: e - x = x;
— left inverse: x7 1 - x =e.
Such description is essentially symbolical. We thus pursuit the idea of im-
plementing, via a deep embedding, a symbolic system in HOL Light, which can
be used to formalise algebraic structures. At a first sight, our framework will

** The author was supported by MIUR and GNSAGA-INdAM.

http://www.math.unifi.it/~maggesi/

resemble the implementation of a Computer Algebra System (CAS) in the “pro-
gramming language” HOL.

One key point of our approach is that it allows to encode and administer a
hierarchy of algebraic structures without the need of extra-logical mechanisms,
like axiomatic classes, modules, locales, coercions, etc.

We present a prototype implementation in its early stage of development.
Various implementation choices have to be explored, tested and discussed. We
argue that our methodology is sound and adeguate in principle. Whether this
proof of concept can evolve into a workable approach in practice is the object of
the present research.

The source code of our prototype can be obtained from the following repos-
itory: https://bitbucket.org/maggesi/symbolic|.

2 Abstract terms

The starting point of our work is the definition of a type for representing symbolic
expressions in HOL. We introduce the new type ‘:aterm® (think “aterm” as
mnemonic for abstract terms) which is just the inductive type of the so called
ground terms:

let aterm_INDUCT,aterm_RECUR = define_type
"aterm = Symb string
| App aterm aterm";;

Hence an aterm can be either a symbol ‘Symb s or an application of two aterms
‘App f x°‘. The latter intends to denote a functional application f(z).

We can consider several possible extensions and modifications to our type
of abstract terms (a separate constructor for variables, polymorphic constants,
binding constructions). However, we perceive ground terms as a kind of God-
given abstract syntax which can conveniently encode any formula written on
paper. So we will stick to this simple design choice for now.

We extended HOL Light by implementing a custom parser and printer for
aterms, in order to allow the user to work with a more traditional concrete
syntax. We use the notation #(...) to quote and antiquote aterms. For instance,
to represent the mathematical expression x + y, we will use the abstract term

:App (APP (Symb n+u) (Symb "X")) (Symb uyn)c

which is represented in HOL Light with the notation ‘#(x + y) ‘. When a sub-
term of an aterm cannot be represented with the concrete syntax, the hash
notation is used to antiquote the term. For instance, in the term

‘App (App (Symb "=") x) (Symb y)°

the subterms x and y are HOL variables, not aterm symbols, thus they are
preceded by the hash character in the concrete syntax:

‘#(#x = #y)¢

https://bitbucket.org/maggesi/symbolic

3 Generalized conversions

In the Higher-Order Logic, equality has a prominent role from its very foundation
and HOL systems provide a rich set of tools to reason with equations. However,
it is often the case that equivalence relations have to be used instead of plain
equality, for which we have no specific support for rewriting in HOL Light.

In our settings, we are led to consider several kind of equivalence relations
between aterms. We will give an example based on group theory in the next
section. We thus develop our own mechanism which allows to perform rewriting
with equivalence relations. As for the standard rewriting system, the key idea is
the notion of conversion, introduced by Paulson in LCF. We propose a notion
of generalised conversions (gconvs for short) which extends Paulson’s conver-
sions to work with equivalence relations. Our basic observation is that, given
an equivalence relation ‘R¢ we have ‘R x y <=> R x = R y°, that is, two el-
ements are equivalent if and only if they have the same associated class. Thus
a generalised conversion is an ML procedure that for all term ‘R t¢ produces
a theorem |- R t = R t’ or fails. As for standard conversions, we define vari-
ous conversionals (i.e., higher-order conversions) which allows to build complex
conversions from basic building blocks.

We use the suffix _GCONV for generalised conversions and the prefix G in
other cases. So, for instance, we have a conversion REWRITE_GCONV and a tactic
GREWRITE_TAC that generalises the corresponding classical variants REWRITE_CONV
and REWRITE_TAC.

4 A basic example: Group Theory

As a basic example, we illustrate a simple formalisation of group theory in HOL
Light using our framework.

All the theory is encoded using a single judgment ‘GROUP #(z = y) ¢ which
states that z and y are equivalent ‘expressions’ (i.e., aterms) in group the-
ory. Please notice the use of the hash notation to denote that the argument
of ‘GROUP¢ is an aterm. In particular, we stress that the equality symbol there
does not denote the standard equality of HOL, but a judgmental equality within
our object theory of groups. (A more realistic example would also include a judge-
ment for ‘membership’ or ‘wellformedness’, but we omit it here for simplicity.)

The inductive predicate ‘GROUP:aterm->bool°¢ is inductively defined as fol-
lows:

let GROUP_RULES, GROUP_INDUCT, GROUP_CASES = new_inductive_definition
“('x. GROUP #(#x = #x)) /\
('x y. GROUP #(#x = #y) ==> GROUP #(#y = #x)) /\
('x y z. GROUP #(#x = #y) /\ GROUP #(#y = #z)
==> GROUP #(#x = #z)) /\

('x x” y y’. GROUP #(#x = #x’) /\ GROUP #(#y = #y’)

==> GROUP #(#x * #y = #x’ * #y’)) /\
('x x’. GROUP #(#x = #x’) ==> GROUP #(inv #x = inv #x’)) /\

(!'x. GROUP #(e * #x = #x)) /\
('x. GROUP #(inv #x * #x = e)) /\
('x y z. GROUP #(#x * (#y * #z) = (#x *x #y) * #2));;

The inductive definition is composed by eight rules. The first three of them
are the reflexivity, symmetry and transitivity property of our judgemental equal-
ity. Next there are three rules that assert that multiplication and inversion of the
group are compatible with equality. Finally, we have the three usual axioms for
group theory: identity on left, inverse on left and associativity of the product.

By using our mechanism of generalised conversions, illustrated in the previ-
ous section, it is immediate to derive from the above axioms several other simple
theorems and identities of the theory. For instance, the following basic compu-
tation (z-y~!)-y=a-(y~! y) =2 -e =2 can be performed in one shot using
GREWRITE_TAC as follows:

let GROUP_MUL_LINV = prove
(‘“!'x y. GROUP #((#x * inv #y) * #y = #x)°,
GREWRITE_TAC[GROUP_REVASSOC; GROUP_LINV; GROUP_RIDI);;

Finally, we define a HOL function GROUP_SIMP for putting a group expression
in normal form. E.g., the expression (z=%-¢e)-y~ ! (y-) can be simplified with
the command

GROUP_SIMP_CONV ‘GROUP_SIMP #((inv x * e) * inv y * (y * x))*;;
val it : thm = |- GROUP_SIMP #((inv x * e) * inv y * y * x) = #(e)

We also prove the soundness of the GROUP_SIMP function
|- !x. GROUP #(#(GROUP_SIMP x) = #x)

thus providing another tool for automatically certify identities in group theory.

5 Conclusions

We presented a proof of concept for reasoning about ‘abstract’ algebraic formulas
in HOL Light. The project is in its early stage of development and lacks essential
functionalities. Nevertheless, our system it is already capable of supporting basic
examples of algebraic theories, like reasoning about identities in group theory,
in a completely certified way. We consider this as a preliminary step toward a
general framework for formalising algebraic structures in HOL Light.

	A symbolic approach to abstract algebrain HOL Light

