
Towards Formula Translation using
Recursive Neural Networks

Felix Petersen Moritz Schubotz Bela Gipp

Department of Computer and Information Science
University of Konstanz, Germany

first.last@uni-konstanz.de

Abstract

While it has become common to perform automated translations on
natural language, performing translations between different represen-
tations of mathematical formulae has thus far not been possible. We
implemented the first translator for mathematical formulae based on
recursive neural networks. We chose recursive neural networks because
mathematical formulae inherently include a structural encoding. In our
implementation, we developed new techniques and topologies for recur-
sive tree-to-tree neural networks based on multi-variate multi-valued
Long Short-Term Memory cells. We propose a novel approach for mini-
batch training that utilizes clustering and tree traversal. We evaluate
our translator and analyze the behavior of our proposed topologies and
techniques based on a translation from generic LATEX to the semantic
LATEX notation. We use the semantic LATEX notation from the Digi-
tal Library for Mathematical Formulae and the Digital Repository for
Mathematical Formulae at the National Institute for Standards and
Technology. We find that a simple heuristics-based clustering algo-
rithm outperforms the conventional clustering algorithms on the task of
clustering binary trees of mathematical formulae with respect to their
topology. Furthermore, we find a mask for the loss function, which can
prevent the neural network from finding a local minimum of the loss
function. Given our preliminary results, a complete translation from for-
mula to formula is not yet possible. However, we achieved a prediction
accuracy of 47.05% for predicting symbols at the correct position and
an accuracy of 92.3% when ignoring the predicted position. Concluding,
our work advances the field of recursive neural networks by improving
the training speed and quality of training. In the future, we will work
towards a complete translation allowing a machine-interpretation of
LATEX formulae.

Copyright c© by the paper’s authors. Copying permitted for private and academic purposes.
In: O. Hasan, F. Rabe (eds.): Proceedings of the CICM 2018, Hagenberg, Austria, 13-08-2018, published at http://ceur-ws.org



1 Introduction
Most mathematical formulae are denoted in presentation language (PL) [SchubotzGSMCG18] for the purpose
of displaying them. However, PL does not allow machine-interpretation of the formula, i.e. any semantic
information contained in a given formulae cannot be understood by Computer Algebra Systems (CAS). One
reason for this limitation is the ambiguity of PL. For example, x̄ (\bar{x}) may either be the mean of x, the
complex conjugate of x, or it may take on an array of other meanings. On the other hand, for humans, the
machine-readable unambiguous notations of content language (CL) are often more laborious to produce, read, and
remember. Therefore, a reliable machine translation between PL and CL is a crucial step towards the automatized
machine-interpretation of mathematical notation that is found in academic and technical documents.

The National Institute for Standards and Technology (NIST), the Digital Library for Mathematical Formulae
(DLMF), and the Digital Repository for Mathematical Formulae (DRMF) developed a set of LATEX macros that
allow an unambiguous mathematical notation within LATEX [Miller2003]. We refer to this notation as semantic
LATEX and refer to the standard LATEX maths notation as generic LATEX. It is possible to translate from semantic
LATEX to generic LATEX using LATEXML. However, the reverse translation from generic to semantic LATEX is not
solved yet. To achieve this reverse translation the disambiguation of mathematical formulae is mandatory.

Thus, we experimented with a standalone neural disambiguation that classifies which semantic LATEX macro is
most likely to be correct. To use this approach, we would require a rule-based translator that utilizes the neural
network only in ambiguous cases.

Rule-based translators are not readily transferable to other mathematical languages. Furthermore, they require
a very complex program that depends on the input and output language and are also hard to maintain if the
languages are extended or a new language should be added.

Therefore, we use machine learning methods to build a full translator as announced in [Cohl15]. How well
implicit mathematical disambiguation within a machine learning-based translator performs remains is subject
of future research. We expect that our new approach outperforms existing approaches when it comes to the
implicit mathematical disambiguation, since simple neural networks already yielded significantly better results
than traditional approaches on similar tasks as discussed below.

Recently, recurrent neural networks with sequence-to-sequence models yielded state-of-the-art results on natural
language translation tasks [DBLP:journals/corr/Lipton15]. In natural language machine translation, even
an inaccurate paraphrasing translation is sufficient to satisfy a user’s most basic information needs. However, in
contrast, inaccurate translations in mathematical machine translation are most likely useless and misleading for
the typical mathematical information needs. Thus, in contrast to natural language, for mathematical formulae a
precise translation in mandatory.

As sequential recurrent neural networks don’t utilize the tree-like structure of input and output, they lack
precision in the domain of structure.

An alternative to recurrent neural networks is recursive neural networks, which are not linear but have a
tree-like structure.

By building a recursive neural network, the neural network explicitly receives information on the location of
the respective words and symbols. As soon as this information is relevant for the translation, a recursive neural
network can yield better results than a recurrent neural network. Further, recursive neural networks have a lower
depth than recurrent neural networks. Thus, the problem of exploding or vanishing gradients is reduced.

In most cases, no structural information about natural language is given. Therefore, it is required to deduce a
structure for these sentences. Finding such a structure is ambiguous and error-prone. Mathematical formulae
often allow a straightforward derivation of the semantic structure or are already given in a structured format.
Thus, we believe that utilizing recursive neural networks is a promising approach for the automatic translation of
mathematical formulae.

In summary, our research contributes towards:

• the disambiguation of mathematical formulae, and

• the neural machine translation of mathematical formulae.

Furthermore, our research yields the following contributions for recursive neural networks:

• faster training by using a semi-batched computation, and

• a local minima avoiding loss function for decoders.



The contributions for recursive neural networks may also be applicable to other machine-learning tasks, including
sentiment analysis.

We structure the presentation of our contributions as follows. Section 2 presents an overview of prior research.
Section 3 states the problem of translation and presents our neural network approach. Section 4 presents the
applied preprocessing steps for the formulae. Section 5 presents our evaluation techniques and current results.
Section 6 discusses our results and conclusions. Finally, avenues for future work are presented in section 7.

2 Related Work

To the best of our knowledge, no research towards machine learning translation for mathematical formulae
between different representations has been performed thus far. Our research towards machine translation of
mathematical formulae will enable future work on various topics from automated checking of mathematical
formulae to plagiarism detection.

There have already been rule-based attempts to translate between mathematical languages. There exists a
rule-based translator from semantic LATEX to CASs (e.g., Maple) [Cohl17]. Thus, by translating from generic to
semantic LATEX, we also obtain a notation that is readable by CASs. The semantic LATEX to Maple translator
achieved an accuracy of 53.59% on correctly translating 4 165 test equations from the DLMF. The accuracy of
the semantic LATEX to CAS translator is relatively low because of the high complexity of these test equations,
and because most of the functions which are represented by a DLMF/DRMF LATEX macro are not defined in
Maple [Cohl17]. Our approach may act as a substitute for this translator in cases where the aspired CAS is not
yet implemented. The semantic LATEX to CAS translator may also be used as a reference for our approach.

State-of-the-art for language translation uses recurrent neural networks employing, e.g., Long Short-Term
Memory (LSTM) cells in sequence-to-sequence networks [tf-seq2seq].

In recent time, also recursive neural networks have been used for the translation of struc-
tured data in tree-to-tree networks. Chen et al. used tree-to-tree networks for program transla-
tion [DBLP:journals/corr/abs-1802-03691]. Recursive neural networks have mainly been used for
different machine learning tasks, such as sentiment analysis of the Stanford sentiment tree bank
[DBLP:journals/corr/TaiSM15], or classification of collimated sprays of energetic hadrons in quantum
chromodynamics [Louppe:2017ipp]. A majority of tasks does not require a random sized and structured output
but rather a classification. Therefore, these neural networks only need a recursive encoder. Thus, only a minority
of research has been performed on recursive decoders. Local minima of loss functions often cause neural networks
to stop learning or even lead them to predict only one constant value. Thus, we propose a local minimum avoiding
loss function for the training of recursive decoders.

Tai et al. [DBLP:journals/corr/TaiSM15] presented tree-structured LSTM networks. LSTMs are building
blocks of neural networks that are composed of a cell, an input gate, an output gate and a forget gate. Their
purpose is to remember values over a long time and avoid the problem of exploding gradients utilizing their
forget gate. We extend this approach using multi-variate multi-valued LSTMs in order to build recursive LSTM
networks with a recursive encoder, as well as a recursive decoder.

This means that we use a neural network whose encoder and decoder have the same topology as the binary parse
tree of the input formula respectively output formula. Therefore, the structure of the input defines the topology
of the neural network. Thus, in general, for the training of recursive neural networks, a batched computation is
not directly possible. A reason for that is that trees with different topologies usually cannot share one neural
network [DBLP:journals/corr/BowmanGRGMP16]. Alternatively, the neural network could be made big
enough to capture the whole dataset, which would result in neural networks with tens or hundreds of thousands
of LSTM-units. Since one of the main issues of neural networks is long training times, a speedup of the training
is essential. Recursive neural networks especially suffer from long training times since a batched computation is
not directly possible [DBLP:journals/corr/BowmanGRGMP16]. Thus, we propose a new technique that
enables semi-batched computation for recursive neural networks utilizing clustering and tree traversal.

3 Method

In this section, we will present the problem of translation of trees and give an overview of our approach. Further,
we will present our method for a standalone disambiguation and comment on our implementation.



DLMF/DRMF
formulae
(generic +
semantic

LATEX pairs)

Data augu-
mentationtrain. set

val. set

Parsing
to trees

Parsing
to trees

Clustering
the trees

Clustering
the trees

generic

generic

semantic

semantic

Training

Validation

Figure 1: Overview of the model pipeline.
First, we split our data into a training set (e.g., 90%) and a validation set (e.g., 10%). Then, we
apply data augmentation on the training set to make it more robust (c.f. section 4.1). Then, we
transform the formulae into trees (c.f. section 4.2). Then, we cluster the formula trees (c.f. section
4.3). Finally, we train our neural network on the training data set (c.f. section 3.2.1) and evaluate it
on the validation data set (c.f. section 5).

3.1 Problem Statement

Let x ∈ X be the binary parse tree of a generic LATEX formula. Further, let y ∈ Y be the respective binary
parse tree of the semantic LATEX translation of x. In these binary trees, only the leaves are labeled with positive
integers corresponding to the words and symbols of the formula, all other nodes are labeled as zero.

Further, let xa for a, being a binary tree with a ⊃ x, be a tree with the topology of a and the values of x
padded with the tag yend with respect to the topology of a. Here, “a ⊃ b” means that for each node in b there is
a node in a at the same position in the tree. The padding is performed such that a position is tagged with yend
iff there is no node at the respective position in x.

We want to find a mapping f : X→ Y,x 7→ y.
This mapping has to be derivable with respect to the tree topologies, the definition of our recursive neural

network, and the trained weight and bias matrices.
Therefore, we create a neural network and generate a loss as a distance measure between the ground truth and

the prediction. By minimizing the loss, we get an improved mapping.

3.2 Approach

Figure 1 gives an overview of our model pipeline. In the following, we will describe our recursive neural network
approach as shown in Figure 2. Here, the recursive topology of these LSTM networks depends on the structure
of the input tree. In the following, we will use terminology from the “Deep Learning” book by Goodfellow et
al. [Goodfellow-et-al-2016].

The input of our neural network is a batch of trees with the same topology. The ground truth of our neural
network is a batch of trees with the same topology.

A one-hot encoding represents the values of the nodes of the trees. The encoder (upper half of Figure 2)
is responsible for converting the binary tree into a hidden state, while the decoder (lower half of Figure 2) is
responsible for converting a hidden state into a new binary tree.

For the encoder, we recursively obtain a hidden state by feeding the hidden states of the left and right child
as well as the value of the node to one two-variate (aka. two-ary) LSTM. The hidden states of the leaves are
initialized as zero. Thus, we obtain a hidden state.

We may apply a quasi-linear function to this hidden state; whether this improves the translation is not yet
determined. This is mandatory if the hidden state sizes of the encoder and the decoder differ.

For the decoder, we use one two-valued LSTM to generate the hidden state of the left and right child and
predict the value of the node. Further, the decoder is fed with the prediction of its parent’s value. This two-valued
LSTM is equivalent to two separate LSTMs, one LSTM being responsible for generating the left output and the
other for the right output.



Figure 2: Scheme of the tree-
to-tree neural network (fig-
ure based on a figure from
[Louppe:2017ipp])

Since we apply an additional tree traversal on the binary trees for the
purpose of obtaining a better clustering, we need to consider this traversal
inside the neural network. Each time we take or obtain two children, we
lookup the stored traversal information T where T = 0 if the children were
not exchanged and T = 1 if the children were exchanged in the preprocessing
step. Then, we compute

(1− T ) · (ULhkL + URhkR) + T · (URhkL + ULhkR)

instead of
ULhkL + URhkR

for the left and right children’s weight matrices UL, UR and the left and
right children’s hidden states hkL ,hkR . By this replacement, the neural
network obtains the correct trees, while the topology of the neural network
is independent of a clustering improving traversal.

We use this structure per layer, while the hidden state of a previous
layer is the input of the next layer. The input of the first layer of the
encoder is the embedding of the respective value in the input tree. The
output of the highest layer is used for the prediction. The prediction is
computed by the application of two embeddings on the output of a respec-
tive LSTM. We initialize the weight matrices using the Xavier initializer
[pmlr-v9-glorot10a], we initialize the biases to zero.

3.2.1 Training

In this section, we describe how we trained the aforementioned recursive neural network. We use the clusters of
trees as mini-batches. As loss function, we use softmax cross-entropy.

Since the actual formula is only a subtree of the input for the neural networks with sizes of roughly about
30− 60%, most nodes are padded with zeros and yends. This causes the primary influence on the loss to be the
prediction of the padding zeros and yends. Thus, the neural network learns the local minimum of only predicting
these recurrent values quickly.

Furthermore, the high occurrence frequency of tokens such as, “^” in mathematical formulae yields a strong
bias towards predicting these tokens.

Therefore, we mask the loss function to lower the influence of commonly occurring symbols, such as parentheses,
on the learning process. We achieve this by element-wise multiplication of the losses with the mask

mi :=
{

β
||{yj |yi=yj}||α

if ŷi = yi
1

||{yj |yi=yj}||α
if ŷi 6= yi

where ŷ is the prediction and y is the correct translation. Here, α, β ∈ [0, 1]. α sets the strength of the masking.
While α = 0 causes the mask to have no influence, α = 1 causes the influence of a loss to be the reciprocal of the
number of occurrences of its symbol in the mini-batch. β is responsible for a reduction of the influence iff the
prediction is correct. A too low β may cause oscillation.

Because the speed of learning should be independent of the size of the input tree’s size and the local mini-batch
size, we use reduce_sum instead of reduce_mean in order to weight every node equally and independent of the
mini-batch in which it is included. The advantages of the common reduce_mean, easier search for a learning rate
and better numeric stability, are outweighed in this case.

For training, we use the RMSProp optimizer [DBLP:journals/corr/Ruder16] and the Adam optimizer
[KingmaB14] with learning rates between 10−6 and 10−4. The learning rate for the Adam optimizer has to be
lower than for the RMSProp optimizer. As the optimal dropout, we found that 5% performs best.

As an alternative to directly feeding the encoder with the input formula and the decoder with the output
formula, we can use two auto-encoders, one for the input formula and another one for the output formula. This
means that the encoder, as well as the decoder, is fed with the same values. Thus, the auto-encoders are trained
to simulate the identity function. Because the information has to be compressed to be preserved while being
propagated through the neural network as a state of lower size, a fitting representation is learned. Subsequently,



we can combine the auto-encoder of the input formula as the encoder and the auto-encoder of the output formula
as the decoder to a new neural network. By having translators from an input tree to a vector and from another
vector to an output tree, we can easily train a mapping between these representations.

3.2.2 Standalone disambiguation

Since mathematical notations, as well as an element-wise mapping from generic to semantic LATEX, are ambiguous,
we implemented a standalone disambiguation. This disambiguation decides - for a given generic LATEX symbol
and a bag-of-words of the formula - which semantic LATEX macro is correct.

We restrict the classification to predictions that make sense. I.e., we choose only between those semantic LATEX
macros that would be re-translated into the same generic LATEX symbol.

We trained several neural networks with one to five hidden layers on this classification task.

3.2.3 Implementation

At firsts, we implemented a single-layer version of the neural network in TensorFlow. We found that in our case
plain Python resulted in a speed increase of about 10 to 50 times compared to TensorFlow. TensorFlow was so
slow because the recurrent changing of the neural network topology takes a long time in TensorFlow. Thus, a
majority of the training time has been used by the creation of the neural network because we needed to recreate
the neural network for each mini-batch. Further, TensorFlow is optimized for GPUs, yet we used CPUs because
of a high memory demand. Therefore, we rewrote our TensorFlow code in plain Python utilizing numpy and
autograd. While the TensorFlow implementation consumed up to 500GB of RAM for a single layer, our numpy
implementation uses only up to 12GB of RAM with three layers.

4 Data and Preprocessing
This section describes the preprocessing steps from formula strings to clusters of formula trees.

For training and evaluation, we used 13 939 generic / semantic LATEX formula pairs from the DLMF/DRMF,
NIST. As shown in Figure 1, we first apply data augmentation on the training set. Then, we parse the formulae
to trees and cluster these trees with respect to their topology.

4.1 Data augmentation

To achieve a robust neural network, we extended our dataset using the following mechanism. For this, we split our
dataset on comparators1 since the subexpressions obtained by these splits are still valid mathematical expressions.
We then take the single terms, every two and three adjacent terms, including one or two comparators, and
the whole formula (less if less is given). The following example shows these steps. As a result of this data
augmentation, we received a data set containing 51 217 mathematical terms.

− 3
2π + δ ≤ ph((λ2 − λ1)z) ≤ 3

2π − δ
→
1. − 3

2π + δ

2. ph((λ2 − λ1)z)
3. 3

2π − δ
4. − 3

2π + δ ≤ ph((λ2 − λ1)z)
5. ph((λ2 − λ1)z) ≤ 3

2π − δ

4.2 Formula Parsing and Tree Traversal

In the following, we will describe our heuristics based formula parser for transforming the formulae into only-leaf-
labeled binary parse trees.

Our parser first tokenizes the formula string. It then recursively transforms the token stream into a non-full
n-ary tree. Structure-only generating braces and brackets are omitted, since the structure of the tree represents
them. The following heuristics can either be activated or deactivated; due to lack of time, we have not yet

1We use =, \gt, \lt, \equiv, \asympeq, \sim, \[Rr]ightarrow, and \to



thoroughly evaluated, how well these heuristics perform. In future work, we will carry out this evaluation. To
achieve the results reported on in this paper, we have activated the first two heuristics.

• If a node forms a command, <COMMAND_END> is added as an additional terminating leaf.

• If a node forms a concatenation on the same level (e.g., a + b), <CONCAT_END> is added as an additional
terminating leaf.

• Leaves that are infix operators are moved to the left, such that they are present in prefix notation.

After applying this tree traversal, we transform the n-ary tree into an adaptation of left-child right-sibling
binary trees. I.e., we adapt left-child right-sibling binary trees to leaf-only valued trees. Here, the left child is the
first child, and the right child is the same node excluding the first child.

The following example input illustrates the parsing and traversal process:

\frac{2a}{n+\sqrt{2}}+\sqrt{3}
(

2a
n+
√

2 +
√

3
)

First, we tokenize the input:

\frac { 2 a } { n + \sqrt { 2 } } + \sqrt { 3 }

As shown in Figure 3, we generate an n-ary tree from this token stream. Next, we can (optionally) add the
<COMMAND_END> and <CONCAT_END> tokens as shown in Figure 4. Additionally, we can (optionally) traverse the
tree from infix to prefix notation as shown in Figure 5.

\frac 2 a n + \sqrt 2 + \sqrt 3 \frac 2 a n + \sqrt 2 + \sqrt 3

Figure 3: Parse tree without <COMMAND_END>, <CONCAT_END> or infix to prefix traversal (left is n-ary, right is
binary)

\frac 2 a <2> n + \sqrt 2 <1> <2> <1> + \sqrt 3 <1> \frac 2 a <2> n + \sqrt 2 <1> <2> <1> + \sqrt 3 <1>

Figure 4: Parse tree with <COMMAND_END> as <1> and <CONCAT_END> as <2> (left is n-ary, right is binary)

+ \frac 2 a + n \sqrt 2 \sqrt 3 + \frac 2 a + n \sqrt 2 \sqrt 3

Figure 5: Parse tree with infix to prefix traversal (left is n-ary, right is binary)

Now, we can perform a traversal to gain the right-child-biggest property. For this, we recursively exchange the
children of a tree if the size of the left child is greater than that of the right child. For a reconstruction within the
neural network, we store the information on which children of a tree we performed the exchange. Thus, we obtain
trees that are more similar, which improves the clustering (i.e., increases the speed of training).

After the subsequent clustering, these binary trees serve as input for the neural network.



4.3 Tree clustering

Because the topology of the neural network depends on the input, we would have to generate a new neural
network for each formula. Therefore, we apply a padding to the binary trees. To do this, we create a binary tree
a with a topology greater or equal to every tree x ∈ X and compute xa, the padded version of x.

Generating the neural network for a for all trees, would result in having ∼ 80 000 nodes which would require
approximately tens of Terabytes of RAM, which is impractical. Therefore, we cluster the pairs of binary trees
(x,y) according to their topology.

We implemented numerous standard clustering algorithms, including k-means, DBSCAN, and linkage-
algorithms. The results of these algorithms were insufficient. Therefore, we implemented Algorithm 1. For this
algorithm, the choice of min-elems-list and max-size-list is crucial. The following choices yielded the best results:

(min-elems)i :=
⌊

2% ·#trees to cluster
||min-elems||−1

√
2% ·#trees to cluster

i−1

⌋
(1)

(max-size)i :=
⌊

5 ·
(
||max-size||−1√104

)i−1
⌋

(2)

Algorithm 1: Pick clustering
Data: masks
Result: clustering

1 clustering ← empty clustering
2 min-elems-list ← descending list (e.g., 20 exponential steps ⊂ [b2% ·#trees to clusterc, 1])
3 max-size-list ← ascending list (e.g., 20 exponential steps ⊂ [5, 5 · 104])
4 for min-elems, max-size in min-elems-list, max-size-list do
5 clustering ← FindClusters (clustering, masks, minelems, maxsize)
6 end

Algorithm 2: Find clusters
Data: clustering, masks, min-elems, max-size
Result: clustering

1 for mask in non-clustered masks do
2 initialize new cluster
3 while min{ ‖a‖ | ∀e ∈ cluster : e ⊂ a} ≤ max-size do
4 Add all elements to cluster that do not increase ‖a‖
5 Add the element to cluster which has the least increment to ‖a‖ if min{ ‖a‖ | ∀e ∈ cluster : e ⊂ a} ≤

max-size still holds
6 end
7 if number of elements in cluster < min-elems then
8 resolve cluster
9 end

10 end

Compared to the other tested clustering algorithms, this algorithm led to the best results on the given task of
finding clusters with a small hull tree and finding as many elements as possible per cluster in a short time. The
table in Figure 6 shows selected results of the clustering algorithms. Experiments showed that the training time
is roughly proportional to

#clusters ·
(∑

x∈X || ax‘s cluster ||
)α where α ∈ [1, 1.02] (3)

and where ax‘s cluster is the minimal tree, such that a ⊃ b holds for each b in x’s cluster. Thus, we want to
minimize this product to achieve a shorter training duration. In general, it is more important to reduce the number
of clusters than the size of the paddings because this enables a better parallelization and because less native
Python code is executed. By combining this clustering algorithm and the previously presented tree traversal,
semi-batched computation and training is made possible.



Algorithm parameters #clusters a ∑
x∈X || ax‘s cluster || b est. training timec CPU-timed

no clustering 15 240 1 839 066 28 027 -
Algorithm 1 parameters 1e 541 4 913 814 2 658 02:41:09
Algorithm 1 parameters 2 1 815 2 998 306 5 441 01:27:49
Algorithm 1 parameters 2, no tree traversal 2 071 3 298 798 6 832 08:48:44
k-means k = 935 935 > 5 222 216 > 5 000 02:09:45
k-means k = 2 287 2 287 > 2 817 670 > 6 500 123:10:20
complete-linkage n = 2 287 2 287 > 4 187 086 > 9 575 01:04:07
DBSCANf various options > 7 000 > 10 000 000 > 70 000 -

Figure 6: Comparison of clustering algorithms. The application of tree traversal is implied. For performance
reasons, the clusterings are only computed for 15 240 of the 51 217 mathematical terms in our data set.

aLess important quality measure: Lower is better
bMore important quality measure: Lower is better
cAccording to equation 3 with α = 1 and multiplied with 10−6
dCPU-time of clustering including preprocessing and evaluation on SCCKN at ∼ 2.5GHz
eAs in equations 1 and 2
fDBSCAN was very weak because either a lot of elements were not related to a cluster or the clusters were too huge.

5 Results
We evaluated our recursive neural network using 10-fold cross validation. As the accuracy measure, we computed
full accuracy pf and masked accuracy pm.

pf := ||{ i | ŷi = yi }||
||{ i | yi ∈ y }|| pm := ||{ i | ŷi = yi,yi 6= 0,yi 6= yend }||

||{ i | yi 6= 0,yi 6= yend }||
(4)

The accuracies ignore that a prediction may be almost correct if the result is, for example, shifted by one node.
Therefore, if an error occurs near the root, a proper subtree at the wrong position is interpreted as wrong, too.
For this reason, we additionally implemented a bag-of-words accuracy

pb := 1−
n−1∑
i=0

max
(

#y
i −#ŷ

i , 0
)

‖y‖

 (5)

where n is the number of possible values, and #y
i is the number of occurrences of i in y. The bag-of-words

accuracy thus measures whether the prediction consists of the same unsorted values and frequencies as the ground
truth but ignores their structure. This makes the measure robust against shifts of nodes. Since the training
is in no way biased towards the direction of this measure, it is very likely that most of the errors which cause
a reduction in the full accuracy, but are correct with respect to the bag-of-words accuracy, are only a slight
displacement within the tree.

If the full accuracy is higher than the masked accuracy, the prediction of the topology of the tree (equal to the
prediction of zeros) is better than the prediction of the values. This can indicate a bias towards predicting zeros.
While this almost always occurs, our loss function avoids falling into a local minimum.

Until now, we mainly trained on a subset of only 15 240 mathematical terms for performance reasons. Further,
we used relatively high learning rates.

Currently, we achieved a masked validation accuracy of pm = 47.05%. Further, we repeatedly obtained full
validation accuracies of up to pf = 80%. Our experiment with the best masked validation reached a bag-of-words
accuracy of pb = 92.3%.

The results show that the single-layer approach outperforms the multi-layer approaches. An LSTM state size
of 256 produced the best results.

By traversing and clustering the trees, we could achieve a speed increase of roughly factor ten.

5.1 Standalone disambiguation

The standalone disambiguation of mathematical formulae, which chooses which mathematical interpretation
(i.e., semantic LATEX macro) to use, yielded excellent results. Without training (i.e., random prediction), we



achieved an accuracy of 50− 60%. This is because some generic LATEX symbols are restricted to a single semantic
LATEX macro. Using our bag-of-words approach and neural networks, we obtained an accuracy of about 97% per
choice of a semantic LATEX macro.

Since we would need a rule-based translator which only utilizes the neural network in ambiguous cases, our
standalone disambiguation approach is currently not applicable. Our results show that neural networks are
adequate for this disambiguation task. Thus, if a rule-based translator with ambiguities will be implemented, this
would be a good solution.

6 Discussion and Conclusion
The current results cannot yet be applied to a complete translation but are promising considering that we did not
yet use an attention mechanism, and that we did not yet use the entire data set for training. Further, a shortage
of time did not allow a full training.

One major drawback of recursive neural networks is their performance, because, batched training is generally
not possible. We achieved a speed increase of roughly factor ten. How well our technique can be combined with
other speed-optimizing approaches remains to be determined.

A drawback of clustering the training data is that the order of occurring formulae is biased, because formulae
with a similar topology are used together for training. Experiments with a different neural network on the same
bias showed that this bias can be neglected if the learning rate is low enough.

We think that the single-layer network outperforms the multi-layer network since pre-trained embeddings are
not available, and since we didn’t perform layer-wise training, yet.

7 Outlook
In future research, we will improve our implementation to enable a complete formula translation. For that, we
will implement a novel attention mechanism for recursive neural networks. Additionally, we will extend our
auto-encoder approaches and will apply layer-wise training.

For the parsing and tree traversal, we will implement an improved traversal approach based on post-fix notation
to enhance the tree structure.

In the future, this work may allow the DLMF/DRMF to extend their repository of semantic LATEX
formulae more easily. Other applied use cases for this translator are mathematical spell-checkers, validation
of mathematical books, easier interfaces for CASs, and the automated pre-correction of students’ math problem sets.

The standalone disambiguation could also be implemented using a recurrent or recursive neural network instead
of a bag-of-words based approach. This would most likely yield better results, because the order of the formulae,
or respectively, the structure of the formulae can be considered using this approach.

Acknowledgments
We would like to thank Howard Cohl et al. [Cohl15] for sharing their unreleased semantic LATEX macros including
13 939 formulae from the DLMF/DRMF in this format. Further, we would like to thank Christian Borgelt for
advising on the domain of neural networks. This work was supported by the FITWeltweit program of the German
Academic Exchange Service (DAAD), as well as the German Research Foundation (DFG, grant GI-1259-1).


