
Formal Languages for Mathematics

Jonas Betzendahl
jonas.betzendahl@fau.de

2018 – 08 – 13



Motivation (1)

The topic of developing languages for formalising mathematics has
gathered a lot of attention over the last few years. A few
observations:

• Most formalisms fail to capture the flexible nature of
in-the-wild chalk-and-blackboard mathematics.
• Type systems are ubiquitous, but often lack key features to

keep them decidable
• Many systems are also either flexible or have good tool,

support, not both.
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Context & Preliminaries



IMPS (1)

IMPS (short for “Interactive Mathematical Proof System”) is an
interactive theorem prover developed by William Farmer, Joshua
Guttmann and Javier Thayer from 1990 to 1993. It was one of the
influential systems in the era of automated reasoning.

One of the goals in developing IMPS was to create a mathematical
system that gave computational support to mathematical
techniques common among actual mathematicians.
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IMPS (2)

IMPS pioneered mechanisations of many interesting features for
reasoning systems, such as:

• The small theories approach to axiomatic mathematics
(which gives rise to theory graphs)
• A rigorous treatment of undefinedness

(Partial valuation for terms, total valuation for formulas)
• Partial functions, subsorts, definite description operator
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OMDoc
OMDoc (short for Open Mathematical Documents) is a
semantics-oriented markup format for STEM-related documents
extending OpenMath.

OMDoc/MMT brings with it three distinct levels for expression of
(both formal and informal) mathematical knowledge, structurally
similar to IMPS:
• Object Level

Expressions (e.g. terms and formulae) expressed in OpenMath.
• Declaration Level

Constants (functions, types, judgements) with an optional
(object-level) type and/or definition.
• Module Level

Theories and Views; sets of declarations that inhabit a
common namespace and context.
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MMT

The OMDoc/MMT language is
used by the MMT system,
which provides an API to handle
OMDoc/MMT content and
services such as type checking,
rewriting of expressions and
computation, as well as
notation-based presentation of
OMDoc/MMT content and a
general infrastructure for
inspecting and browsing
libraries.
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Further the shared formalisation for multiple mathematical systems.
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Goals (2)

Finding a treatment of undefinedness that integrates well the
MMT system.

Partial valuation for terms, total valuation for formulas and the
divide into two concrete kinds of all mathematical expressions seem
a bit inelegant.
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Goals (3)

A proof system similar to that of IMPS, for MMT. Probably a tall
order for the time frame of one PhD.

Focus for now: automatic handling / solving of small proof
obligations in the context of type checking.

Γ ` t = t ′ Γ ` t : A

Γ ` t ↓ Γ `? : A
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Efforts (1)

Survey of related systems:
(with focus on treatment of undefined values and possibly small
proof obligations)

• Logical Frameworks
(e.g. LF, Isabelle) Typically thin tool support, narrow focus.
• Proof Assistants

(e.g. Coq, Agda, HOL Light) Mostly limited to decidable TT.
• Fully Automated Provers

(e.g. E, Vampire) Usually limited to first-order logic.
• Computation Systems

(e.g. GAP, Sage) Insufficient treatment of undefinedness.



Efforts (1)

Survey of related systems:
(with focus on treatment of undefined values and possibly small
proof obligations)

• Logical Frameworks
(e.g. LF, Isabelle) Typically thin tool support, narrow focus.

• Proof Assistants
(e.g. Coq, Agda, HOL Light) Mostly limited to decidable TT.
• Fully Automated Provers

(e.g. E, Vampire) Usually limited to first-order logic.
• Computation Systems

(e.g. GAP, Sage) Insufficient treatment of undefinedness.



Efforts (1)

Survey of related systems:
(with focus on treatment of undefined values and possibly small
proof obligations)

• Logical Frameworks
(e.g. LF, Isabelle) Typically thin tool support, narrow focus.
• Proof Assistants

(e.g. Coq, Agda, HOL Light) Mostly limited to decidable TT.

• Fully Automated Provers
(e.g. E, Vampire) Usually limited to first-order logic.
• Computation Systems

(e.g. GAP, Sage) Insufficient treatment of undefinedness.



Efforts (1)

Survey of related systems:
(with focus on treatment of undefined values and possibly small
proof obligations)

• Logical Frameworks
(e.g. LF, Isabelle) Typically thin tool support, narrow focus.
• Proof Assistants

(e.g. Coq, Agda, HOL Light) Mostly limited to decidable TT.
• Fully Automated Provers

(e.g. E, Vampire) Usually limited to first-order logic.

• Computation Systems
(e.g. GAP, Sage) Insufficient treatment of undefinedness.



Efforts (1)

Survey of related systems:
(with focus on treatment of undefined values and possibly small
proof obligations)

• Logical Frameworks
(e.g. LF, Isabelle) Typically thin tool support, narrow focus.
• Proof Assistants

(e.g. Coq, Agda, HOL Light) Mostly limited to decidable TT.
• Fully Automated Provers

(e.g. E, Vampire) Usually limited to first-order logic.
• Computation Systems

(e.g. GAP, Sage) Insufficient treatment of undefinedness.



Efforts (2)

Import/Export (to and from MMT) for HOL Light.



Efforts (3)

Work towards mechanised dismissal of tiny proof obligations during
type-checking.

Concretely: MMT as of today has support for annotating
declarations of equalities so that the simplifier is able to use them
as additional rules at runtime.

This process needs to be extended to also allow the introduction of
rules with premises and the automated checking of the same.
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Efforts (4)

Develop a softly typed set theory (i.e. types are added only after
the fact via unary predicates) in MMT.

Working in this context brings up a lot of the tiny proof obligations
mentioned earlier and hence could serve as a testing environment.

It also might lead to some insights if an approach like this, with
the flexibility it brings to the table, is suitable for formalisation.
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