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Hilbert’s Tenth Problem

Hilbert’s Question

Is there an algorithm which can determine whether or not an
arbitrary polynomial equation in several variables has solutions in
integers?

Modern formulation

There exists a program taking coefficients of a polynomial equation
as input and producing yes or no answer to the question: Are there
integer solutions?
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The Answer

Martin Davis, Julia Robinson, Yuri Matiyasevich(b. 1947),
Hilary Putnam

Negative solution of Hilbert’s tenth problem (≈1949–1970)

All recursively enumerable sets are Diophantine.
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Historical overview

Davis approach (≈1949)

Hilbert’s tenth problem has a negative solution, if

there is no general algorithm to determine whether a
Diophantine equation has solutions in the integers, if

there exists a Diophantine set that is not recursive, if

Davis’s conjecture is true.
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Historical overview
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Normal form for recursively enumerable sets (Martin Davis, 1949)

{a | ∃y∀k 6 y∃x1, . . . , xn : p (a, k, y , x1, . . . , xn) = 0}
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Matiyasevich‘s theorem

Exponentiation is Diophantine i.e. there exists a suitable
polynomial P with the property:

p = qr ⇐⇒ ∃x1, x2, . . . , xm : P(p, q, r , x1, x2, ..., xm) = 0.

The proof technique

The original approach: From a Diophantine definition of the
relation y = F2x where F0, F1, F2, . . . are Fibonacci numbers.

Post–Matiyasevich approach Explores the Pell equation:
x2 − Dy2 = 1.
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Selected solutions of Pell’s equation

List of the smallest non zero solution to x2−Dy2 = 1 for given D:

x2 − 46y2 = 1, pair 〈24335, 3588〉.
x2 − 53y2 = 1, pair 〈66249, 9100〉.
x2 − 61y2 = 1, pair 〈1766319049, 226153980〉.
x2 − 73y2 = 1, pair 〈2281249, 267000〉.

Question: Is there always a solution?

Answer: Yes (Joseph-Louis Lagrange 1768).

Formalizing 100 Theorems (Freek Wiedijk)

39. Solutions to Pell’s Equation
HOL Light, John Harrison
Mizar, Marcin Acewicz & Karol Pak
Metamath, Stefan O’Rear
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Pell’s equation in Mizar

$N 39. Solutions to Pell’s Equation

theorem :: PELLS EQ:14
D is non square implies

ex x,y be Nat st xˆ2 - D * yˆ2 = 1 & y <> 0;

$N The Cardinality of the Pell‘s Solutions

theorem :: PELLS EQ:17
for D be non square Nat holds

the set of all ab where ab is positive
Pell′s solution of D is infinite;
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Post-Matiyasevich approach

Based on a special case (easy case) of the Pell’s equation that
has the form x2 − (a2 − 1)y2 = 1.

Solutions of the case can be ordered in two sequences
recursively:

x0(a) = 1
y0(a) = 0

xn+1(a) = a · xn(a) + (a2 − 1) · yn(a)
yn+1(a) = xn(a) + a · yn(a)
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Post-Matiyasevich approach - First advanced lemma

theorem :: HILB10 1:38
for y,z,a be Nat holds

y = Py(a,z) & a > 1 iff

ex x,x1,y1,A,x2,y2 be Nat st
a>1 &
[x,y] is Pell′s solution of (aˆ2- 1) &
[x1,y1] is Pell′s solution of (aˆ2- 1) &
y1>=y & A > y & y >= z &
[x2,y2] is Pell′s solution of (Aˆ2- 1) &
y2,y are congruent mod x1 &
A,a are congruent mod x1 &
y2,z are congruent mod 2*y &
A,1 are congruent mod 2*y &
y1,0 are congruent mod yˆ2;
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Post-Matiyasevich approach - Second advanced lemma

theorem :: HILB10 1:39
for x,y,z be Nat holds

y = x|ˆz
iff

(y = 1 & z = 0) or
(x = 0 & y = 0 & z > 0) or
(x = 1 & y = 1 & z > 0) or
(x > 1 & z > 0 & ex y1,y2,y3,K be Nat st

y1 = Py(x,z+1) & K > 2*z*y1 &
y2 = Py(K,z+1) & y3 = Py(K*x,z+1) &
(0 <= y-y3/y2 <1/2 or 0 <= y3/y2 -y < 1/2));
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Diophantine in Mizar

Diophantine set

A Diophantine set is a subset A of Ni for some i such that there
exists j and a polynomial equation with integer coefficients and
unknowns P(x , y) = 0 with x ∈ Ni , y ∈ Nj such that

∀a∈Ni a ∈ A ⇐⇒ ∃b∈NjP(a, b) = 0.
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Diophantine in Mizar

definition
let n be Nat;
let A be Subset of n -xtuples of NAT;
attr A is diophantine means :: HILB10 2:def 6

ex m being Nat,p being INT-valued Polynomial of n+m,F Real st
for s holds

s in A iff ex x being n-element XFinSequence of NAT,
y being m-element XFinSequence of NAT st

s = x & eval(p,@(xˆy)) = 0;
end;
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Matiyasevich’s piece of the puzzle

theorem HILB10 3:23
for i1,i2,i3 be Element of n holds
{p where p be n-element XFinSequence of NAT:

p.i1 = Py(p.i2,p.i3) & p.i2 > 1}
is diophantine Subset of n -xtuples˙of NAT

theorem HILB10 3:24
for i1,i2,i3 be Element of n holds
{p where p be n-element XFinSequence of NAT:

p.i2 =(p.i1) |ˆ (p.i3)}
is diophantine Subset of n -xtuples˙of NAT
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Proof overview

Intersections and unions of Diophantine sets are Diophantine.

Proof. Suppose P1(T ,X ), P2(T ,Y ) are polynomials that
determine subsets A1 and A2, respectively. Then

P1(T ,X ) · P2(T ,Y ), P1(T ,X )2 + P2(T ,Y )2

are suitable polynomials to determine A1 ∪ A2, A1 ∩ A2.

Substitution

If R ⊂ ωn+1 is Diophantine and F is an n-ary function with a
Diophantine graph, then the relation S(x0, . . . , xi−I , xi+1, . . . , xn)
defined by

S : R(x0, . . . , xi−I ,F (x0, . . . , xi−l , xi+l , . . . , xn), xi+l , . . . , xn)

is also Diophantine.
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Substitution in Mizar

scheme Substitution{P[Nat,Nat,Nat,Nat,Nat,Nat],
F(Nat,Nat,Nat)→Nat}:

for i1,i2,i3,i4,i5 holds {p: P[p.i1,p.i2,F(p.i3,p.i4,p.i5),p.i3,p.i4,p.i5]}
is diophantine Subset of n -xtuples of NAT

provided
A1: for i1,i2,i3,i4,i5,i6 holds {p: P[p.i1,p.i2,p.i3,p.i4,p.i5,p.i6]}

is diophantine Subset of n -xtuples of NAT
and

A2:for i1,i2,i3,i4 holds {p: F(p.i1,p.i2,p.i3) = p.i4}
is diophantine Subset of n -xtuples of NAT
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DPRM Theorem – current state

Probably one of the last advanced lemma

If R ⊂ ωn+2 is Diophantine then ∀y¬x{a|a_〈x , y〉 ∈ R} is
Diophantine.

Proof technique

Chinese remainder theorem, 4 combinatorial lemmas: binomial is
Diophantine and further factorial, two cases of product.
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Currently up to the 4-th lemma

theorem step4:
for x,y,x1 be Nat st x1 >= 1holds

y = Product (1+(x1 * idseq x))
iff

ex u,w,y1,y2,y3,y4,y5 be Nat st
u > y & x1*w,1 are˙congruent˙mod u &
y1 = x1|ˆx &
y2 = x! &
y3 = (w+x) choose x &
y1*y2*y3,y are congruent mod u &
y4 = 1+x1*x &
y5 = y4|ˆx & u > y5
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Conclusions

4 Mizar articles, 8600–lines.

1 goal from Freek Wiedijk’s list of ”Top 100 mathematical
theorems”.

Matiyasevich’s theorem (piece of the puzzle).
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