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Hilbert's Tenth Problem

Hilbert's Question

Is there an algorithm which can determine whether or not an
arbitrary polynomial equation in several variables has solutions in
integers?

v
Modern formulation

There exists a program taking coefficients of a polynomial equation
as input and producing yes or no answer to the question: Are there
integer solutions?

y
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Martin Davis, Julia Robinson, Yuri Matiyasevich(b. 1947),
Hilary Putnam

Negative solution of Hilbert's tenth problem (a~1949-1970)

All recursively enumerable sets are Diophantine.
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Historical overview

Davis approach (~1949)
@ Hilbert's tenth problem has a negative solution, if

@ there is no general algorithm to determine whether a
Diophantine equation has solutions in the integers, if

@ there exists a Diophantine set that is not recursive, if

@ Davis's conjecture is true.
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Historical overview

exponential J.R. hypothesis x = y*

QQ~ Diophantine is Diophantine
Q
recursively
enumerable set

Robinson (1960)

Davis's conjecture (1948)

Normal form for recursively enumerable sets (Martin Davis, 1949)

{a| IyVk <y3Ixi,....xn:p(a,k,y,x1,...,xn) =0}
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Matiyasevich's theorem

Exponentiation is Diophantine i.e. there exists a suitable
polynomial P with the property:

p=¢q < Ixi,x2,...,xm: P(p,q,r,x1,x2,...,xm) = 0.

The proof technique

@ The original approach: From a Diophantine definition of the
relation y = Fp, where Fy, F1, Fp, ... are Fibonacci numbers.

o Post—Matiyasevich approach Explores the Pell equation:
x2 — Dy2 =1.
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Selected solutions of Pell's equation

List of the smallest non zero solution to x> — Dy? = 1 for given D:
o x? — 46y% = 1, pair (24335,3588).
o x2 —53y% =1, pair (66249,9100).
o x2 —61y? =1, pair (1766319049, 226153980).
o x2 —73y? =1, pair (2281249, 267000).

Question: Is there always a solution?
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Selected solutions of Pell's equation

List of the smallest non zero solution to x> — Dy? = 1 for given D:
o x? — 46y% = 1, pair (24335,3588).
o x2 —53y% =1, pair (66249,9100).
o x2 —61y? =1, pair (1766319049, 226153980).
o x2 —73y? =1, pair (2281249, 267000).

Question: Is there always a solution?
Answer: Yes (Joseph-Louis Lagrange 1768).

Formalizing 100 Theorems (Freek Wiedijk)

39. Solutions to Pell's Equation
HOL Light, John Harrison
Mizar, Marcin Acewicz & Karol Pak
Metamath, Stefan O’'Rear
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Pell's equation in Mizar
$N 39. Solutions to Pell's Equation

theorem :: PELLS_EQ:14
D is non square implies
exx,ybeNatstx2-D*y2=1& y <> 0;

v

$N The Cardinality of the Pell's Solutions

theorem :: PELLS EQ:17
for D be non square Nat holds
the set of all ab where ab is positive
Pell’s_solution of D is infinite;
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Post-Matiyasevich approach

@ Based on a special case (easy case) of the Pell's equation that
has the form x? — (a? — 1)y? = 1.

@ Solutions of the case can be ordered in two sequences

recursively:
Xo(a) = 1
v(a) = 0
xni1(a) = a-xn(a) + (2% —1) - yn(a)
ynt1(a) = xn(a)+a-yn(a)
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Post-Matiyasevich approach - First advanced lemma

theorem :: HILB10_1:38
for y,z,a be Nat holds
y = Py(a,z) & a > 1 iff
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Post-Matiyasevich approach - First advanced lemma

theorem :: HILB10_1:38

for y,z,a be Nat holds
y = Py(a,z) & a > 1 iff

ex x,x1,y1,A,x2,y2 be Nat st
a>1 &
[x,y] is Pell's_solution of (a"2- 1) &
[x1,y1] is Pell’'s_solution of (a"2- 1) &
yi>=y & A>y&y>=z&
[x2,y2] is Pell’'s_solution of (A"2- 1) &
y2,y are_congruent_mod x1 &
A,a are_congruent_mod x1 &
y2,z are_congruent_mod 2*y &
A1 are_congruent_mod 2*y &
y1,0 are_congruent_mod y"2;
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Post-Matiyasevich approach - Second advanced lemma

theorem :: HILB10_-1:39
for x,y,z be Nat holds
y =x|"z
iff
(y=1&z=0)or
(x=0&y=0&z>0)or
x=1&y=1&z>0)or
(x>1&2z>0&exyly2y3K be Nat st
yl = Py(x,z+1) & K > 2*z2*y1 &
y2 = Py(K,z+1) & y3 = Py(K*x,z+1) &
(0 <=y-y3/y2 <1/20r 0 <=y3/y2 -y < 1/2));
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Diophantine in Mizar

Diophantine set

A Diophantine set is a subset A of N’ for some i such that there
exists j and a polynomial equation with integer coefficients and
unknowns P(x,y) = 0 with x € N, y € NV such that

VaeN; acA — ElbeNjP(a, b) =0.
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Diophantine in Mizar

definition

let n be Nat;

let A be Subset of n -xtuples_of NAT;

attr A is diophantine means :: HILB10_2:def 6

ex m being Nat,p being INT-valued Polynomial of n+m,F_Real st
for s holds
s in A iff ex x being n-element XFinSequence of NAT,
y being m-element XFinSequence of NAT st
s = x & eval(p,Q(x"y)) = 0;

end;
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Matiyasevich's piece of the puzzle

theorem HILB10_3:23
for i1,i2,i3 be Element of n holds
{p where p be n-element XFinSequence of NAT:
p.il = Py(p.i2,p.i3) & p.i2 > 1}
is diophantine Subset of n -xtuples'of NAT

theorem HILB10_3:24
for i1,i2,i3 be Element of n holds
{p where p be n-element XFinSequence of NAT:

pi2 =(pil) | (p.i3)}
is diophantine Subset of n -xtuples'of NAT
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Proof overview
Intersections and unions of Diophantine sets are Diophantine.

Proof. Suppose P1(T,X), P2(T,Y) are polynomials that
determine subsets Al and A2, respectively. Then

P1(T,X)-P2(T,Y), PL(T,X)?>+ P2(T,Y)>?

are suitable polynomials to determine A1 U A2, A1 N A2.

Substitution

| A\,

If R C w"*t! is Diophantine and F is an n-ary function with a

Diophantine graph, then the relation S(xo, ..., Xi—f, Xi+1,- -, Xn)
defined by
S: R(Xo, ey Xi— |y F(Xo, ey Xi— s Xigfy o e - ,Xn),XH_/, . ,X,,)

is also Diophantine.
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Substitution in Mizar

scheme Substitution{P[Nat,Nat,Nat,Nat,Nat,Nat],
F(Nat,Nat,Nat)—Nat }:
for i1,i2,i3,i4,i5 holds {p: P[p.il,p.i2,F (p.i3,p.i4,p.i5),p.i3,p.i4,p.i5]}
is diophantine Subset of n -xtuples_of NAT
provided
A1: for i1,i2,i3,i4,i5,i6 holds {p: P[p.il,p.i2,p.i3,p.i4,p.i5,p.i6]}
is diophantine Subset of n -xtuples_of NAT
and
A2:for 11,i2,i3,i4 holds {p: F(p.i1,p.i2,p.i3) = p.id}
is diophantine Subset of n -xtuples_of NAT
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DPRM Theorem — current state

Probably one of the last advanced lemma

If R C w™?2 is Diophantine then ¥V, <,{ala~(x,y) € R} is
Diophantine.
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DPRM Theorem — current state

Probably one of the last advanced lemma

If R C w™?2 is Diophantine then ¥V, <,{ala~(x,y) € R} is
Diophantine.

2.11. Bounded Quantifier Theorem. Let P(Ao, ..., Am-1, X, Y, X0, ..., Xn-1) be a
polynomial. There is a polynomial Q(Ao, ..., Am-1, X) such that, for any ay, ... ,
am-1 € O,
i. Vx[Q(ao, ..., am-1, %) 2 x]
ii. Vx Vyxo.xp-1 <x[IP(a,x,y, )| < Q(a, x)]
iii. for any x, the following are equivalent:

a. Vy <x3xg..xp-1 <x[P(a,x,y,X) = 0]

b. Jetvp..vp-1 [t = Q@x)! A 1+(c+ 1)t = f[(l +(m+ 1)) A
m=0

A 1+(c+l)t|ﬁ(vo—j) A Al+(c+1) Iﬁ(v,,_l—j) A
=0 ey

A 1+ (c+ 1)t | P@ag, ..., Gm-1, X, Cy V0, -es Vn-1)].

Proof technique

Chinese remainder theorem, 4 combinatorial lemmas: binomial is
Diophantine and further factorial, two cases of product.
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Currently up to the 4-th lemma

theorem step4:
for x,y,x1 be Nat st x1 >= 1lholds
y = Product (14+(x1 * idseq x))
iff
ex u,w,y1,y2,y3,y4,y5 be Nat st
u >y & x1*w,1 are’congruent mod u &
yl =x1"x &
y2=xl &
y3 = (w+x) choose x &
y1*y2*y3,y are_congruent_mod u &
y4d = 1+x1*x &
yb =v4|’x & u>yH
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Conclusions

@ 4 Mizar articles, 8600—lines.

@ 1 goal from Freek Wiedijk's list of " Top 100 mathematical
theorems” .

e Matiyasevich's theorem (piece of the puzzle).
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