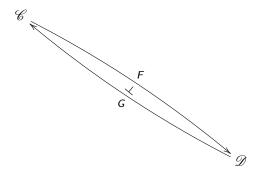
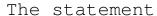
Mac Lane's Comparison Theorem for the (co)Kleisli construction in Coq

Burak Ekici

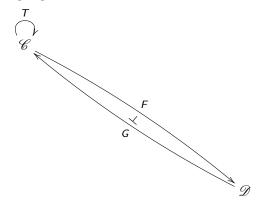
University of Innsbruck, Austria

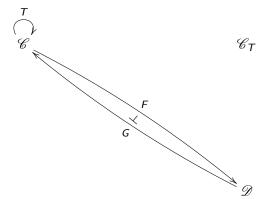
August 13, 2018

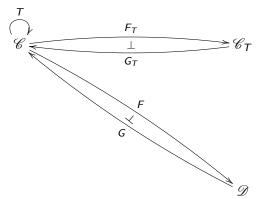


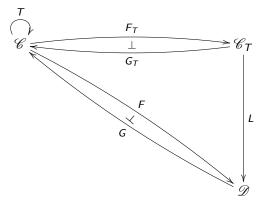


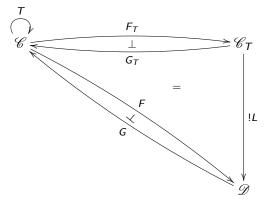
Comparsion Theorem





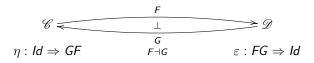






$$\exists ! L : \mathscr{C}_T \to \mathscr{D}, L \circ F_T = F \wedge G \circ L = F_T$$

Adjunctions



Definition

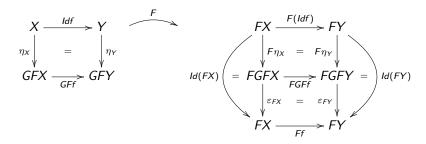
Let $\mathscr C$ and $\mathscr D$ be two categories. The functors $F:\mathscr C\to\mathscr D$ and $G:\mathscr D\to\mathscr C$ form an adjunction $F\dashv G:\mathscr D\to\mathscr C$ iff there exists natural transformations $\eta\colon Id_{\mathscr C}\Rightarrow GF$ and $\varepsilon\colon FG\Rightarrow Id_{\mathscr D}$ such that:

$$\varepsilon_{FX} \circ F \eta_X = id_{FX} \text{ for each } X \text{ in } \mathscr{C}$$
 (1)

$$G\varepsilon_X\circ\eta_{GX}=id_{GX}$$
 for each X in $\mathscr D$ (2)

Adjunctions

$$arepsilon_{FX}\circ F\eta_X=id_{FX}$$
 for each X in $\mathscr C$



Adjunctions: an example

In CIC, the logical \land and \Longrightarrow are adjoint operations when Coq's Prop universe is defined as a category.

The proof is in the library comes with this talk

Adjunctions: an example

In CIC, the logical \land and \Longrightarrow are adjoint operations when Coq's *Prop* universe is defined as a category.

The proof is in the library comes with this talk.

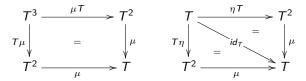
Monads

Definition

A monad $T=(T,\eta,\mu)$ in a category $\mathscr C$ consists of an endofunctor $T: \mathscr{C} \to \mathscr{C}$ with two natural transformations

$$\eta: Id_{\mathscr{C}} \Rightarrow T \qquad \mu: T^2 \Rightarrow T$$
(3)

such that the following diagrams commute:

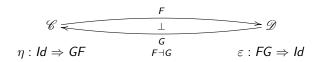


Monad: quick examples

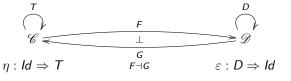
- A monoid is a monad in the category of endo-functors
- In CIC, the triple (fmapM, etaM, muM) forms a monad when Coq's Type universe is defined as a category.

```
Inductive maybe (A: Type) \triangleq just: A \rightarrow maybe A | nothing: maybe A.
Definition fmapM {A B: Type} (f: A \rightarrow B) (i: maybe A): maybe B \triangleq
  match i with
   | just _ a ⇒ just _ (f a)
   | nothing _ \Rightarrow nothing _
  end.
Definition etaM {A: Type} (a: A): maybe A \triangleq just A a.
Definition muM \{A : Type\} (i: maybe (maybe A)): maybe A \triangleq
  match i with
   l just a ⇒ a
   | nothing ⇒ nothing
  end.
```

Every adjunction gives a monad



Every adjunction gives a monad



Proposition

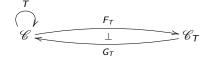
An adjunction $F \dashv G: \mathcal{D} \rightarrow \mathscr{C}$ determines a monad on \mathscr{C} and a comonad on \mathscr{D} as follows:

- lacksquare The monad (T,η,μ) on $\mathscr C$ $T=GF\colon \mathscr C o\mathscr C$, $\mu_X=G(\varepsilon_{FX})$.
- \blacksquare The comonad (D, ε, δ) on \mathscr{D} $D = FG: \mathscr{D} \to \mathscr{D}$, $\delta_A = F(\eta_{GA})$.

 $\mathscr{C}_{\mathcal{T}}$

Proposition

Each monad (T, η, μ) on a category \mathscr{C} determines a Kleisli category \mathscr{C}_T ,



Proposition

Each monad (T, η, μ) on a category $\mathscr C$ determines a Kleisli category $\mathscr C_T$, and an associated adjunction $F_T\dashv G_T\colon \mathscr C_T\to \mathscr C$.

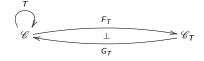
 \mathscr{C}_{T}

- The categories $\mathscr C$ and $\mathscr C_T$ have the same objects and there is a morphism $f^{\flat} \colon X \to Y$ in $\mathscr C_T$ for each $f \colon X \to TY$ in $\mathscr C$.
- lacksquare For each object X in \mathscr{C}_T , the identity arrow is $id_X = h^{\flat} \colon X \to X$ in \mathscr{C}_T where

$$h = \eta_X \colon X \to TX$$
 in \mathscr{C} .

■ The composition of a pair of morphisms $f^b \colon X \to Y$ and $g^b \colon Y \to Z$ in \mathscr{C}_T is given by the Kleisli composition:

$$g^{\flat} \circ f^{\flat} = h^{\flat} \colon X \to Z$$
 where $h = \mu_{Z} \circ Tg \circ f \colon X \to TZ$ in \mathscr{C} .



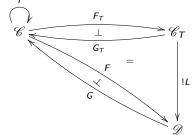
 \blacksquare The functor $F_T\colon\mathscr{C}\to\mathscr{C}_T$ is the identity on objects. On morphisms,

$$F_T f = (\eta_Y \circ f)^{\flat}$$
, for each $f: X \to Y$ in \mathscr{C} . (4)

■ The functor $G_T: \mathscr{C}_T \to \mathscr{C}$ maps each object X in \mathscr{C}_T to TX in \mathscr{C} . On morphisms,

$$G_T(g^{\flat}) = \mu_Y \circ Tg$$
, for each $g^{\flat} \colon X \to Y$ in \mathscr{C}_T . (5)

Sketch of the proof



1 Characterize some map $L: \mathscr{C}_T \to \mathscr{D}$ by

$$\begin{cases} LX &= FX \\ Lf^{\flat} &= \varepsilon_{FY} \circ Ff, \text{ for each } f^{\flat} \colon X \to Y \text{ in } \mathscr{C}_{T} \end{cases}$$

- 2 Prove that L is a functor satisfying $GL = G_T$ and $LF_T = F$.
- 3 Show that L is unique

Proof: L is a functor

■ For each X in \mathscr{C}_T , $id_X = (\eta_X)^{\flat}$ in \mathscr{C}_T , we have $L(id_X) = L(\eta_X)^{\flat} = \varepsilon_{FX} \circ F\eta_X$. We get

$$\varepsilon_{FX} \circ F \eta_X = id_{FX} = id_{LX}.$$

 \blacksquare For each pair of morphisms $f^{\flat}\colon X\to Y$ and $g^{\flat}\colon Y\to Z$ in $\mathscr{C}_{\mathcal{T}},$ by Kleisli composition, we obtain

$$L(g^{\flat} \circ f^{\flat}) = \varepsilon_{FZ} \circ FG\varepsilon_{FZ} \circ FGFg \circ Ff.$$

Since ε is natural, we have $\varepsilon_{FZ}\circ Fg\circ \varepsilon_{FY}\circ Ff$ which is $L(g^{\flat})\circ L(f^{\flat})$ in \mathscr{D} .

Hence $L:\mathscr{C}_T\to\mathscr{D}$ is a functor.

Proof: L satisfies ...

1 For each object X in \mathscr{C}_T , LX = FX in \mathscr{D} and $GLX = GFX = TX = G_TX$ in \mathscr{C} . For each morphism $f^{\flat} \colon X \to Y$ in \mathscr{C}_T , $Lf^{\flat} = \varepsilon_{FY} \circ Ff$ in D by definition. Hence,

$$GLf^{\flat} = G\varepsilon_{FY} \circ GFf.$$

Similarly, by definition $G_Tf^\flat=\mu_Y\circ Tf$. Since $\mu_Y=G(\varepsilon_{FY})$, we get

$$G_T f^{\flat} = G \varepsilon_{FY} \circ GF f.$$

We get $GLf^{\flat}=G_{\mathcal{T}}f^{\flat}$ for each mapping f^{\flat} . Thus $GL=G_{\mathcal{T}}$.

2 F_T is the identity on objects, thus $LF_TX = LX = FX$. For each morphism $f\colon X\to Y$ in $\mathscr C$, we have $F_Tf=(\eta_Y\circ f)^\flat$ in $\mathscr C_T$, by definition. So that

$$LF_T f = L(\eta_Y \circ f)^{\flat} = \varepsilon_{FY} \circ F \eta_Y \circ F f.$$

Due to ε and η being natural, we have $\varepsilon_{FY}\circ F\eta_Y=id_{FY}$ yielding $LF_Tf=Ff$ for each mapping f. Therefore $LF_T=F$.

Proof: L is unique

We need to show that $\forall R\colon\mathscr{C}_T\to\mathscr{D}$ such that $R\circ F_T=F$ and $G\circ R=G_T, L=R$.

 \blacksquare forall X in $\mathscr{C}_T, LX = RX$

$$LX = FX$$
 (by definition)
= RF_TX (by axiom)
= RX (F_T is the identity)

Therefore, LX = RX

Proof: L is unique

Lemma

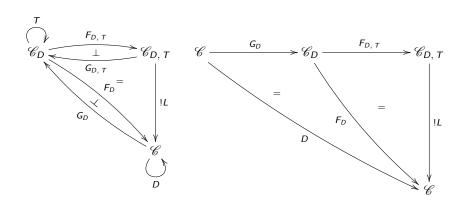
Let $F \dashv G : \mathscr{D} \rightarrow \mathscr{C}$ be an adjunction. For each $f : X \rightarrow GY$ in \mathscr{C} , and $g, h: FX \to Y$ in \mathcal{D} , if $f = Gg \circ \eta_X$ and $f = Gh \circ \eta_X$ then g = h.

$$\begin{array}{lll} \bullet & \text{forall} & f^{\flat} \colon X \to Y & \text{in} & \mathscr{C}_{T}, L f^{\flat} = R f^{\flat} \\ & G(R f^{\flat}) \circ \eta_{X} = G_{T} f^{\flat} \circ \eta_{X} & (by \ axiom) \\ & = \mu_{Y} \circ GF f \circ \eta_{X} & (by \ definition \ of \ G_{T}) \\ & = \mu_{Y} \circ \eta_{GFY} \circ f & (by \ naturality \ of \ \eta) \\ & = f & (GF \ is \ a \ monad) \\ & G(L f^{\flat}) \circ \eta_{X} = G \varepsilon_{FY} \circ GF f \circ \eta_{X} & (by \ definition \ of \ L) \\ & = G \varepsilon_{FY} \circ \eta_{GFY} \circ f & (by \ naturality \ of \ \eta) \\ & = f & (F \dashv G \ is \ an \ adjunction) \\ \end{array}$$

Therefore, \mathscr{C}_{τ} , $Lf^{\flat} = Rf^{\flat}$

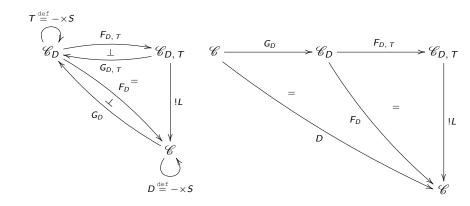
A Use Case

The full image factorization (or decomposition) of D is given by $L\circ G_D\circ F_{D,\,T}\,.$



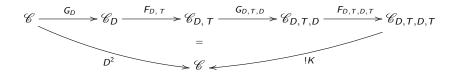
A Use Case

The full image factorization (or decomposition) of D is given by $L\circ G_D\circ F_{D,\,T}\,.$



A Use Case

The full image factorization (or decomposition) of D^2 is given by $K\circ F_{D,T,D,T}\circ G_{D,T,D}\circ F_{D,T}\circ G_{D}$.



Category theory in Coq

Some Category theory formalized in Coq:

- J. Gross, A. Chlipala, and D. I. Spivak. Experience implementing a performant category-theory library in Coq.
- A. Timany and B. Jacobs. Category theory in Cog 8.5.
- J. Wiegley's library on github.
- As a part of UniMath library.
-

All (except the one in UniMath) represent category theoretical objects (i.e., categories, functors, etc.) with Cog type classes.

Our approach is no different.

```
Class Functor (C D: Category): Type ≜
  mk Functor
   fobi
             : @obj C → @obj D;
   fmap : ∀ {a b: @obj C} (f: arrow b a), (arrow (fobj b) (fobj a));
   preserve id : ∀ {a: @obj C}, fmap (@identity C a) = (@identity D (fobj a));
   preserve comp : ∀ {a b c: @obj C} (q : @arrow C c b) (f: @arrow C b a),
                   fmap (q o f) = (fmap q) o (fmap f)
  }.
```

A difficulty

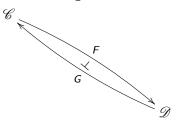
Might be difficult to prove equalities of two class instances.

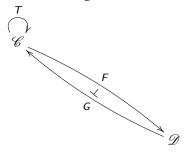
Requires to struggle with explicit coercions hidden behind the heterogenous equality.

A difficulty

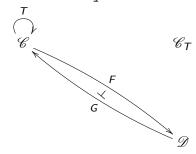
One way to deal with that: converting the goal into an equality on dependent pairs:

```
\{p: (\forall a b : obj, arrow b a \rightarrow arrow (fobj F b) (fobj F a)\} =
      (\forall a b : obj, arrow b a \rightarrow arrow (fobj G b) (fobj G a)) &
match p in (_ = y) return y with
\mid eq_refl \Rightarrow @fmap _ _ F
end = @fmap G}
```





```
\begin{array}{lll} \textbf{Theorem adj\_mon:} \ \forall \ \{\texttt{C D: Category}\} \ (\texttt{F : Functor C D)} \ (\texttt{G: Functor D C)}, \\ \ Adjunction \ \texttt{F G} \ \to \ \texttt{Monad C (Compose\_Functors F G)}. \\ \ \textbf{Proof.} \\ \ \dots \\ \ \texttt{Oed.} \end{array}
```



```
Definition Kleisli_Category
```

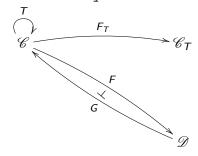
(C: Category) (T: Functor C C) (M: Monad C T): Category. **Proof.** unshelve econstructor.

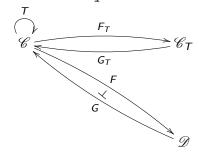
- exact (@obj C).

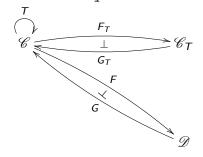
- exact (@obj C).

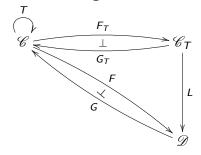
- intros a b. exact (@arrow C (fobj T a) b).

Defined.

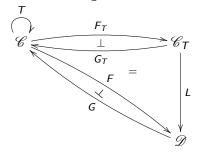








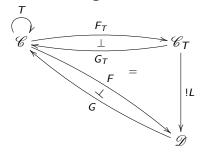
```
Definition L:
   \forall {C D: Category} (F: Functor C D) (G: Functor D C) (Al: Adjunction F G),
 let FT \triangleq (FT F G M) in let GT \triangleq (GT F G M) in
 Proof. intros. cbn in *.
    unshelve econstructor.
    - exact (fobi F).
    - intros a b f. exact (trans eps (fobi F b) o fmap F f).
Defined.
```



```
Lemma commL:
```

Proof.

Qed.



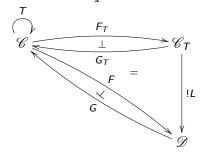
```
\forall {C D: Category} (F: Functor C D) (G: Functor D C) (A1: Adjunction F G),
let M ≜ (adj_mon F G A1) in
let FT ≜ (FT F G M) in let GT ≜ (GT F G M) in
\forall R : Functor CK D, Compose Functors FT R = F \land Compose Functors R G = GT
```

Proof

Qed.

 \rightarrow (L F G A1) = R.

Lemma uniqueL:



```
Lemma ComparisonMacLane:
    ∀ (C D: Category) (F: Functor C D) (G: Functor D C) (A1: Adjunction F G),
let M ≜ (adj_mon F G Al) in
let CK ≜ (Kleisli_Category C (Compose_Functors F G) M) in
let FT ≜ (FT F G M) in let GT ≜ (GT F G M) in
let A2 ≜ (mon_kladj F G M) in
∃ !L, (Compose_Functors FT L) = F ∧ (Compose_Functors L G) = GT.
Proof. intros C D F G Al M CT FT GT A2.
∃ (L F G Al). split.
- apply commL.
- apply uniqueL.
```

Conclusion

- 1 We have formalized in Coq the proof of Mac Lane's comparison theorem for the Kleisli construction.
- 2 Formalization is available at https://github.com/ekiciburak/ ComparisonTheorem-MacLane/tree/submissionLPAR18

&

Questions?

Comparsion Theorem