Mathematical Models as Research Data

why do need precise and well-written information about mathematical models and what can we do

Michael Kohlhase

Professur für Wissensrepräsentation und -verarbeitung Informatik, FAU Erlangen-Nürnberg http://kwarc.info

13. August 2018, Math Models and Math Software as Research Data

1 Introduction

- Definition 1.1. Mathematical Modeling and Simulation (MMS) as a research method
 - fix an object and properties of interest device)
 (e.g. electron distribution in an electronic
 - determine the quantities and physical laws involved (e.g. the electrostatic potential and the Poisson Equation)
 - solve equations symbolically or numerically for given boundary conditions (complex software stacks)
 - 4. publish 1./2./3. in a paper and 3. in a data store (software on GitHub/GitLab)

- Definition 1.1. Mathematical Modeling and Simulation (MMS) as a research method
 - fix an object and properties of interest device)
 (e.g. electron distribution in an electronic
 - 2. determine the quantities and physical laws involved (e.g. the electrostatic potential and the Poisson Equation)
 - solve equations symbolically or numerically for given boundary conditions (complex software stacks)
 - 4. publish 1./2./3. in a paper and 3. in a data store (software on GitHub/GitLab) MMS has been established as a primary scientific research method alongside the classical methods of experiment and theory.

- Definition 1.1. Mathematical Modeling and Simulation (MMS) as a research method
 - fix an object and properties of interest device)
 (e.g. electron distribution in an electronic
 - 2. determine the quantities and physical laws involved (e.g. the electrostatic potential and the Poisson Equation)
 - solve equations symbolically or numerically for given boundary conditions (complex software stacks)
 - 4. publish 1./2./3. in a paper and 3. in a data store (software on GitHub/GitLab) MMS has been established as a primary scientific research method alongside the classical methods of experiment and theory.
- ► Research in of MMS is characterized by mathematical models, scientific software, and numerical data from computations (input, output, parameters) (see [KT16])

- Definition 1.1. Mathematical Modeling and Simulation (MMS) as a research method
 - fix an object and properties of interest device)
 (e.g. electron distribution in an electronic
 - 2. determine the quantities and physical laws involved (e.g. the electrostatic potential and the Poisson Equation)
 - solve equations symbolically or numerically for given boundary conditions (complex software stacks)
 - 4. publish 1./2./3. in a paper and 3. in a data store (software on GitHub/GitLab) MMS has been established as a primary scientific research method alongside the classical methods of experiment and theory.
- Research in of MMS is characterized by mathematical models, scientific software, and numerical data from computations (input, output, parameters) (see [KT16]) MMS faces a reproducibility crisis: success and proliferation puts strains on quality of models, software, and data.

- Definition 1.1. Mathematical Modeling and Simulation (MMS) as a research method
 - 1. fix an object and properties of interest (e.g. electron distribution in an electronic device)
 - 2. determine the quantities and physical laws involved (e.g. the electrostatic potential and the Poisson Equation)
 - 3. solve equations symbolically or numerically for given boundary conditions software stacks)
 - 4. publish 1./2./3. in a paper and 3. in a data store (software on GitHub/GitLab) MMS has been established as a primary scientific research method alongside the classical methods of experiment and theory.
- ► Research in of MMS is characterized by mathematical models, scientific software, and numerical data from computations (input, output, parameters) (see [KT16]) MMS faces a reproducibility crisis: success and proliferation puts strains on quality of models, software, and data.
- ▶ Idea/Vision: Treat all three kinds of artefacts above as "Research Data", represent all aspects explicit → establish machine support for

MMS Reproducibility Crisis

- Models (are published in mathematica/physical papers)
 - no standardization of naming, notation, constructors, ...?
 - how are the formulae derived from the physical laws?what are the side conditions/constraints under which the model is accurate?
- ► MMS Software (can only be understood wrt. the underlying models)
 - what are the underlying assumptions/constraints?
 - what are the admissible boundary conditions?
 - where does the iteration converge (well)?
- ▶ Data (needs specification to become information)
 - which software/model/discretization was used?
 - what quantity was measured in what unit?

MMS Reproducibility Crisis

- Models (are published in mathematica/physical papers)
 - ▶ no standardization of naming, notation, constructors, ...?
 - how are the formulae derived from the physical laws?
 - what are the side conditions/constraints under which the model is accurate?
- ► MMS Software (can only be understood wrt. the underlying models)
 - what are the underlying assumptions/constraints?
 what are the admissible boundary conditions?
 - what are the admissible boundary condition
 - where does the iteration converge (well)?
- ▶ Data (needs specification to become information)
 - which software/model/discretization was used?
 - what quantity was measured in what unit?
- ► Models are applied by people who did not develop them.
 - Implicit knowledge about the constraints, domains of applicability are lost.
- Models are applied by people who did not develop them.
 - Implicit knowledge about the constraints, domains of applicability are lost.

State of the Art: FAIR Principles for the Data Aspect

- ► FAIR: data should be Findable, Accessible, Interoperable, and Reusable
 - 1. To be Findable:
 - F1 (meta)data are assigned a globally unique and eternally persistent identifier.
 - F2 data are described with rich metadata.
 - F3 (meta)data are registered or indexed in a searchable resource.
 - F4 metadata specify the data identifier.
 - 2. To be Accessible:
 - A1 (meta)data are retrievable by their identifier using a standardized communications protocol.
 - A1.1 the protocol is open, free, and universally implementable.
 - A1.2 the protocol allows for an authentication and authorization procedure, where necessary.
 - A2 metadata are accessible, even when the data are no longer available.
 - 3. To be Interoperable:
 - I1 (meta)data use a formal, accessible, shared, and broadly applicable language for knowledge representation.
 - 12 (meta)data use vocabularies that follow FAIR principles.
 - 13 (meta)data include qualified references to other (meta)data.
 - 4. To be Re-usable:
 - R1 meta(data) have a plurality of accurate and relevant attributes.
 - R1.1 (meta)data are released with a clear and accessible data usage license.
 - R1.2 (meta)data are associated with their provenance.
 - R1.3 (meta)data meet domain-relevant community standards.

Ongoing...: how to implement these into repositories, protocols, and services? Kohlhase: Math Models as Research Data

State of the Art in 5 Dimensions

Overview: Current Systems/Formats for Models, MMS Software, and Data can be characterized along five dimensions:

1:	Coverage	2: Descrip-	3: Formality	4: Computa-	5 Immediacy
		tion		tional	
	main- lependent	Continuous	Informal	Expressive	Domain Se- mantics
		Weak For- mulations	Semi- Formal	Built-in special cases e.g. PDEs	Reformulation
	main- ecific	Discrete	Formal	Solvable	Dedimensiona- lized Equations

 $[\]sim$ continuous trade-off between "Specification" (hh) and "Implementation" (II)

State of the Art in 5 Dimensions

Overview: Current Systems/Formats for Models, MMS Software, and Data can be characterized along five dimensions:

1: Coverage	2: Descrip-	3: Formality	4: Computa-	5 Immediacy
	tion		tional	
Domain- Independent	Continuous	Informal	Expressive	Domain Se- mantics
	Weak For- mulations	Semi- Formal	Built-in special cases e.g. PDEs	Reformulation
Domain- Specific	Discrete	Formal	Solvable	Dedimensiona- lized Equations

 \sim continuous trade-off between "Specification" (hh) and "Implementation" (II)

Classifying Some Systems:

System	1	2	3	4	5
Publications	hh	hh	hh	hh	hh
Modelica	m	m	П	II	m
MatLab	h	II	П	II	II
FAIR @ MMS	hh-m	hh-m	hh-m	hh-m	hh-m

FAIR Principles for Models and Simulation Software?

 Current Systems/Formats and proposed FAIR-like treatment of Models and MMS Software

2 The MaMoReD Vision (Details in later talks)

The MaMoReD Vision

Recap: Reproducibility of MMS requires precise information on the mathematical models, software, and data.

The MaMoReD Vision

Recap: Reproducibility of MMS requires precise information on the mathematical models, software, and data.

▶ Idea: FAIR principles for models & Software

- (exists for research data)
- treat models/software as research data to make them machine-actionable
- in particular: represent models and mathematical background knowledge explicitly/flexiformally

The MaMoReD Vision

Recap: Reproducibility of MMS requires precise information on the mathematical models, software, and data.

► Idea: FAIR principles for models & Software

- (exists for research data)
- treat models/software as research data to make them machine-actionable
- in particular: represent models and mathematical background knowledge explicitly/flexiformally
- ► Technically: Start with publications for coverage, repeat the following (conceptual)
 - (conceptually)

- 1. formalize, make implicit knowledge explicit
- 2. organize into reusable components
- until we have enough structure to support semantic services(FAIR) do not forget to publish everything!

MaMoReD: Start by Publishing the Whole Story

MaMoReD: Complex/Comprehensive Knowledge Graphs

Content Representation and Services

- active documents adapt to audience
 - e.g., "variables as functions for mathematicians",
 - in-document incremental flattening

Flexiformal Model repositories

- ▶ ▶ DOIs for models (MMT URIs)
 - integration with MathSearch
 - ► Model finder ~ applicable models
 - Model refactoring

(concise, enhanced papers)

Integration of MMS software and Computer-Algebra Systems → MitM (OpenDreamKit)

10

3 MaMoRed: Modular Knowledge Representation for Model Application

Framing for Problem Solving (The FramelT Method)

Example 3.1 (Problem 0.8.15).

How can you measure the height of a tree you cannot climb, when you only have a protactor and a tape measure at hand.

11

Framing for Problem Solving (The FramelT Method)

Example 3.1 (Problem 0.8.15).

How can you measure the height of a tree you cannot climb, when you only have a protactor and a tape measure at hand.

Framing for Problem Solving (The FrameIT Method)

Example 3.1 (Problem 0.8.15).

How can you measure the height of a tree you cannot climb, when you only have a protactor and a tape measure at hand.

Framing: view the problem as one that is already understood (using theory morphisms)

squiggly (framing) morphisms guaranteed by metatheory of theories!

Example Learning Object Graph

13. 8. 2018; M3SRD

12

- 4 The Math-in-the-Middle Paradigm for Interfacing Software Systems/Components
- Interoperability via a Joint Meaning Space —

Interoperability in OpenDreamKit

- ▶ ODK Approach: VRE by connecting existing OSS systems. (and improve them)
- Advantages: well-known Open Source Software
 - 1. Let the specialists do what they do best and like
 - 2. collaboration exponentiates results
 - 3. competition fosters innovation

- (and avoid what they don't)
 - (+ no vendor lock-in)
- ▶ Problem: does an elliptic curve mean the same in GAP, SageMath, LMFDB?
 - otherwise delegating computation becomes unsound
 - storing data in a central KB becomes unsafe
 - the user cannot interpret the results in an UI
- ▶ Idea: Need a common meaning space for safe distributed computation in a VRE!

Obtaining a Common Meaning Space for our VRE

► Three approaches for safe distributed computation/storage/UIs

peer to peer	open standard	industry standard	
FE	F E	F E	
GDD	GSD	GDD	
Н	H	H	
A B	A B	A B	
$n^2/2$ translations	2n translations	2n-2 translations	
symmetric	symmetric	asymmetric	

- Observation: We already have a "standard" for expressing the meaning of concepts/objects/models: mathematical vernacular! (e.g. in math. documents)
- ▶ Problem: mathematical vernacular is too
 - ambiguous: need a human to understand structure, words, and symbols
 - redundant: every paper introduces slightly different notions.
- Math-in-the-Middle Paradigm: encode math knowledge in modular flexiformal format as a frame of reference for joint meaning (OMDoc/MMT)

Standardization with Interfaces

Problem: We are talking about knowledge-based systems (large investment)

15

- Problem: Knowledge is part of both the
 - System → system-specific representation requirements and release cycle
 - Interoperability Standard → stability and generality requirements.
- Idea: Open standard knowledge base with API theories

- **Definition 4.1.** API theories are
 - system-near
 - declarative, in standard format

(import/export facilities maintained with system) (refine general theories, relation documented)

OpenMath System Dialects

- ▶ Observation: Every system has its own input language (optimized to domain)
- ▶ Idea: Abstract away from system surface languages (use internal syntax trees)

OpenMath System Dialects

- Observation: Every system has its own input language (optimized to domain)
- ▶ Idea: Abstract away from system surface languages (use internal syntax trees)
- ▶ Observation: There are two kinds of symbols in syntax trees of a system *S*
 - constructors build primitive objects without involving computation, and
 - operations compute objects from other objects.
- ▶ **Definition 4.2.** The API theories A(S) of S document them \sim we can represent the API of S as OpenMath objects with constants from A(S) (the A(S)-objects). We call the set of A(S)-objects the system dialect of S.

16

OpenMath System Dialects

- Observation: Every system has its own input language (optimized to domain)
- ▶ Idea: Abstract away from system surface languages (use internal syntax trees)
- ▶ Observation: There are two kinds of symbols in syntax trees of a system S
 - constructors build primitive objects without involving computation, and
 - operations compute objects from other objects.
- ▶ **Definition 4.2.** The API theories A(S) of S document them \sim we can represent the API of S as OpenMath objects with constants from A(S) (the A(S)-objects). We call the set of A(S)-objects the system dialect of S.
- ▶ Idea: For each system S generate the API theories A(S) and a serializer/deserializer into the system dialect: an OpenMath phrasebook.
- ► Progress: For system interoperability we only need to relate system dialects meaningfully.

16

Meaning-Preserving Relations between System Dialects

Definition 4.3. We call a pair of identifiers (a1, a2) that describe the same mathematical concept an alignment.
We call an alignment perfect, if it induces a total, truth-preserving translation.

- ▶ Intuition: Alignments don't need to be perfect to be useful!
 - ▶ Alignment up to Totality of Functions (e.g. division undefined on 0 and with $\frac{x}{0} = 0$)
 - ► Alignment for Certain Arguments (e.g. Addition on natural numbers and addition on real numbers)
 - ► Alignment up to Associativity (e.g. binary addition and "sequential" addition)
 They still allow for translating expressions between libraries. (under certain conditions)

17

(e.g. alignment up to argument order)

MitM-Based Distributed Computation

- ▶ Observation: For interoperability between systems *A* and *B* with OpenMath phrasebooks and API theories, we only need
 - 1. a way of transporting OpenMath objects between systems A and B
 - 2. a system dialect mediator that translates A-objects into B-objects based on alignments.
- Idea: Mediator-based architecture

- ▶ Idea for 1.: translate A-objects to B-objects in two steps: A to ontology and ontology to B.
 Implemented in [Mül+17] based on the MMT system [Rab13; MMT], which implements the OMDoc/MMT format.
- ► Idea for 2.: Use the OpenMath SCSCP (Symbolic Computation Software Composability) protocol [Fre+] for that. Implemented SCSCP clients/server by for various OpenDreamKit systems.

5 The Flexiformalist Program: Introduction

Background: Mathematical Documents

- Mathematics plays a fundamental role in Science, Technology, and Engineering (learn from Math, apply for STEM)
- Mathematical knowledge is rich in content, sophisticated in structure, and technical in presentation,
- its conservation, dissemination, and utilization constitutes a challenge for the community and an attractive line of inquiry.
- ▶ Challenge: How can/should we do mathematics in the 21st century?
- Mathematical knowledge and objects are transported by documents
- Three levels of electronic documents:
 - 0. printed (for archival purposes)

Kohlhase: Math Models as Research Data

- 1. digitized (usually from print)
- 2. presentational: encoded text interspersed with presentation markup
- 3. semantic: encoded text with functional markup for the meaning
- transforming down is simple, transforming up needs humans or Al.
- (largely) restricted to the semantic level.

Observation: Computer support for access, aggregation, and application is

▶ This talk: How do we do maths and math documents at the semantic level?

 $(\sim 90\%)$

 $(\sim 50\%)$

 $(\sim 20\%)$ $(\leq 0.1\%)$

Hilbert's (Formalist) Program

- ▶ **Definition 5.1.** Hilbert's Program called for a foundation of mathematics with
 - A formal system that can express all of mathematics (language, models, calculus)
 - ▶ Completeness: all valid mathematical statements can be proved in the formalism.
 - Consistency: a proof that no contradiction can be obtained in the formalism of mathematics.
 - Decidability: algorithm for deciding the truth or falsity of any mathematical statement.
- Originally proposed as "metamathematics" by David Hilbert in 1920.
- Evaluation: The program was
 - ► successful in that FOL+ZFC is a foundation [Göd30] (there are others)
 - disappointing for completeness [Göd31], consistency [Göd31], decidability [Chu36; Tur36]
 - inspiring for computer Scientists building theorem provers
 - ► largely irrelevant to current mathematicians (I want to address this!)

20

Formality in Logic and Artificial Intelligence

- ▶ AI, Philosophy, and Math identify formal representations with Logic
- ▶ **Definition 5.2.** A formal system $S := \langle \mathcal{L}, \mathcal{M}, \mathcal{C} \rangle$ consists of
 - ightharpoonup a (computable) formal language $\mathcal{L}:=\mathcal{L}(S)$ (grammar for words/sentences)
 - ► a model theory \mathcal{M} , (a mapping into (some) world)
 - ightharpoonup and a sound (complete?) proof calculus $\mathcal C$ (a syntactic method of establishing truth) We use $\mathfrak F$ for the class of all formal systems
- Reasoning in a formal system proceeds like a chess game: chaining "moves" allowed by the proof calculus via syntactic (depending only on the form) criteria.
- $lackbox{Observation: computers need \mathcal{L} and \mathcal{C}}$ (adequacy hinges on relation to \$\mathcal{M}\$)
- ► Formality is a "all-or-nothing property".(a single "clearly" can ruin a formal proof)
- ► Empirically: formalization is not always achievable (too tedious for the gain!)
- ▶ Humans can draw conclusions from informal (not \mathcal{L}) representations by other means (not \mathcal{C}).

The miracle of logics

Purely formal derivations are true in the real world!

Formalization in Mathematical Practice

- \triangleright To formalize maths in a formal system S, we need to choose a foundation, i.e. a foundational S-theory, e.g. a set theory like ZFC.
- (a single "obviously" can ruin it.) Formality is an all-or-nothing property
- Almost all mathematical documents are informal in 4 ways:
 - the foundation is unspecified (they are essentially equivalent)
 - the language is informal (essentially opaque to MKM algos.)
 - even formulae are informal

(presentation markup)

- context references are underspecified
 - mathematical objects and concepts are often identified by name
 - statements (citations of definitions, theorems, and proofs) underspecified

 - theories and theory reuse not marked up at all
- The gold standard of mathematical communication is "rigor" (cf. [BC01])

Formalization in Mathematical Practice

- ▶ To formalize maths in a formal system S, we need to choose a foundation, i.e. a foundational S-theory, e.g. a set theory like ZFC.
- ► Formality is an all-or-nothing property (a single "obviously" can ruin it.)
- ▶ Almost all mathematical documents are informal in 4 ways:
 - The gold standard of mathematical communication is "rigor" (cf. [BC01])
 - ▶ **Definition 5.3.** We call a mathematical document rigorous, if it could be formalized in a formal system given enough resources.
 - ► This possibility is almost always unconsummated
 - ▶ Why?: There are four factors that disincentivize formalization for Maths propaganda: *Maths is done with pen and paper* tedium: de Bruijn factors ~ 4 for current systems (details in [Wie12]) inflexibility: formalization requires commitment to formal system and foundation proof verification useless: peer reviewing works just fine for Math
 - ▶ **Definition 5.4.** The de Bruijn factor is the quotient of the lengths of the formalization and the original text.

Formalization in Mathematical Practice

- ▶ To formalize maths in a formal system S, we need to choose a foundation, i.e. a foundational S-theory, e.g. a set theory like ZFC.
- ► Formality is an all-or-nothing property (a single "obviously" can ruin it.)
- Almost all mathematical documents are informal in 4 ways:
 The gold standard of mathematical communication is "rigor" (cf. [BC01])
 - ▶ **Definition 5.3.** We call a mathematical document rigorous, if it could be formalized in a formal system given enough resources.
 - ▶ This possibility is almost always unconsummated
 - Why?: There are four factors that disincentivize formalization for Maths propaganda: Maths is done with pen and paper tedium: de Bruijn factors ∼ 4 for current systems (details in [Wie12]) inflexibility: formalization requires commitment to formal system and foundation proof verification useless: peer reviewing works just fine for Math
 - Definition 5.4. The de Bruijn factor is the quotient of the lengths of the formalization and the original text.

In Effect: Hilbert's program has been comforting but useless

Question: What can we do to change this?

Migration by Stepwise Formalization

► Full Formalization is hard

- (we have to commit, make explicit)
- Let's look at documents and document collections.

Migration by Stepwise Formalization

Full Formalization is hard

- (we have to commit, make explicit)
- Let's look at documents and document collections.
- Partial formalization allows us to
 - formalize stepwise, and
 - be flexible about the depth of formalization.

24

Functionality of Flexiformal Services

► Generally: Flexiformal services deliver according to formality level Garbage in ~ Garbage out!) (GIGO:

But: Services have differing functionality profiles.

- Math Search works well on informal documents
- Change management only needs dependency information
- Proof search needs theorem formalized in logic
- ► Proof checking needs formal proof too

The Flexiformalist Program (Details in [Koh13])

- The development of a regime of partially formalizing
 - mathematical knowledge into a modular ontology of mathematical theories (content commons), and
 - mathematical documents by semantic annotations and links into the content commons (semantic documents),
- ► The establishment of a software infrastructure with
 - a distributed network of archives that manage the content commons and collections of semantic documents,
 - semantic web services that perform tasks to support current and future mathematic practices
 - active document players that present semantic documents to readers and give access to respective
- the re-development of comprehensive part of mathematical knowledge and the mathematical documents that carries it into a flexiformal digital library of mathematics.

Applications!

- ▶ A Business model for a Semantic Web for Math/Science?
- For uptake it is essential to match the return to the investment!

27

▶ Need to move the technology up (carrots) and left (easier)

Conclusion/Take-Home Message

- ► Mathematical Modelling and Simulation is very successful (third pillar of science)
- ► MMS: Simulation software solving the equations from mathematical models produces data
- ► Problem: MMS has a reproducibility crisis (brought on by widespread usage)
- ► MaMoReD Proposal: use MKM techniques (Math Models as Research Data)
 - flexible formalization: from active articles to formalized physical laws to discrete iterations
 - modular representations for re-use and

References I

Henk Barendregt and Arjeh M. Cohen. "Electronic communication of mathematics and the interaction of computer algebra systems and proof assistants". In: *Journal of Symbolic Computation* 32 (2001), pp. 3–22.

Alonzo Church. "A note on the Entscheidungsproblem". In: *Journal of Symbolic Logic* (May 1936), pp. 40–41.

Sebastian Freundt et al. Symbolic Computation Software Composability Protocol (SCSCP). Version 1.3. URL: https://github.com/OpenMath/scscp/blob/master/revisions/SCSCP_1_3.pdf (visited on 08/27/2017).

Kurt Gödel. "Die Vollständigkeit der Axiome des logischen Funktionenkalküls". In: *Monatshefte für Mathematik und Physik* 37 (1930). English Version in [**Heijenoort67**], pp. 349–360.

References II

Kurt Gödel. "Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I". In: *Monatshefte der Mathematischen Physik* 38 (1931). English Version in [**Heijenoort67**], pp. 173–198.

Michael Kohlhase. "The Flexiformalist Manifesto". In: 14th International Workshop on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2012). Ed. by Andrei Voronkov et al. Timisoara, Romania: IEEE Press, 2013, pp. 30–36. ISBN: 978-1-4673-5026-6. URL: http://kwarc.info/kohlhase/papers/synasc13.pdf.

Thomas Koprucki and Karsten Tabelow. "Mathematical Models: A Research Data Category?" In: Mathematical Software - ICMS 2016 - 5th International Congress. Ed. by Gert-Martin Greuel et al. Vol. 9725. LNCS. Springer, 2016, pp. 423–428. DOI: 10.1007/978-3-319-42432-3. URL: http://www.wias-berlin.de/preprint/2267/wias_preprints_2267.pdf.

References III

MMT - Language and System for the Uniform Representation of Knowledge. project web site. URL: https://uniformal.github.io/(visited on 08/30/2016).

Dennis Müller et al. "Alignment-based Translations Across Formal Systems Using Interface Theories". In: Fifth Workshop on Proof eXchange for Theorem Proving - PxTP 2017. 2017. URL: http://jazzpirate.com/Math/AlignmentTranslation.pdf.

Florian Rabe. "The MMT API: A Generic MKM System". In: *Intelligent Computer Mathematics*. Conferences on Intelligent Computer Mathematics (Bath, UK, July 8–12, 2013). Ed. by Jacques Carette et al. Lecture Notes in Computer Science 7961. Springer, 2013, pp. 339–343. ISBN: 978-3-642-39319-8. DOI: 10.1007/978-3-642-39320-4.

Alan Turing. "On computable numbers, with an application to the Entscheidungsproblem". In: *Proceedings of the London Mathematical Society, Series 2* 42 (June 1936), pp. 230–265.

References IV

Freek Wiedijk. The "de Bruijn factor". web page at http://www.cs.ru.nl/~freek/factor/. Mar. 1, 2012. URL: http://www.cs.ru.nl/~freek/factor/.

31

