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Abstract

In 1993 Watkins and Zeitlin published a method to simply
compute the minimal polynomial of cos(2π/n), based on the
Chebyshev polynomials of the first kind. In the present
contribution a small augmentation to GeoGebra is shown:
GeoGebra is now capable to discover and automatically prove
various non-trivial properties of regular n-gons.
Discovering and proving a conjecture can be sketched with
GeoGebra, then, in the background a rigorous proof is computed,
so that the conjecture can be confirmed, or must be rejected.
Besides confirming well known results, many interesting new
theorems can be found, including statements on a regular 11-gon
that are impossible to represent with classical means, for example,
with a compass and a straightedge, or with origami.
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General theorems on constructibility

Theorem (Gauß-Wantzel, 1837)

A regular n-gon is constructible with compass and straightedge if
and only if

n = 2k · p1 · p2 · · · p`

where the pi are all different prime numbers such that pi − 1 = 2m

(k , `,m ∈ N0).

Theorem (Pierpont, 1895)

A regular n-gon is constructible with origami if and only if

n = 2k · 3r · p1 · p2 · · · p`

where the pi are all different prime numbers such that
pi − 1 = 2m · 3s (k, `,m, r , s ∈ N0).
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Consequences

Corollary

A regular 11-gon cannot be constructed with compass and
straightedge, or with origami.

The same statement is valid for n = 22, 23, 25, 29, 31, . . .
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Related work

I Theorems on regular n-gons for small n are well known
(including theorems in mathematics curriculum), including
I constructibility theorems (also in primary/secondary school),
I statements on the golden ratio in regular pentagons.

I Some exotic results are known for bigger n, e.g. for n = 9
Karst’s statement is known (https:
//www.geogebra.org/m/AXd5ByHX#material/x5u93pFr).

I Mechanical geometry theorem proving is a well known
technique, initiated by Wen-Tsün Wu and popularized by his
followers, including Chou, and by Kapur, Buchberger, Kutzler
and Stifter, Recio and Vélez, and others. Several thousands of
theorems can be mechanically proven very quickly—but they
are unrelated to regular polygons.

https://www.geogebra.org/m/AXd5ByHX#material/x5u93pFr
https://www.geogebra.org/m/AXd5ByHX#material/x5u93pFr


This contribution. . .

I is based on Wu’s approach in algebraizing the geometric setup,

I exploits the power of Gröbner basis computations,

I can be further developed towards automated discovery
(→ RegularNGons),

I uses a sequence of formulas by Watkins and Zeitlin, based on
the Chebyshev polynomials of the first kind (in order to
describe consecutive rotations of the edges around one of their
endpoints (=a vertex) by using cos(2π/n) and sin(2π/n)).



Computing the minimal polynomial of cos(2π/n)
Lehmer (1933), Watkins–Zeitlin (1993), recap. Gurtas (2017)

1: procedure cos2piOverNMinpoly(n)
2: pc ← Tn − 1
3: for all j | n ∧ j < n do
4: q ← Tj − 1
5: r ← gcd(pc , q)
6: pc ← pc/r

7: return SquarefreeFactorization(pc)

where Tn stands for the nth Chebyshev polynomial of the first kind
(see https://dlmf.nist.gov/18.9 for its recurrence relations).

https://dlmf.nist.gov/18.9


Minimal polynomial of cos(2π/n)

n Minimal polynomial

1 x − 1
2 x + 1
3 2x + 1
4 x
5 4x2 + 2x − 1
6 2x − 1
7 8x3 + 4x2 − 4x − 1
8 2x2 − 1
9 8x3 − 6x + 1

10 4x2 − 2x − 1
11 32x5 + 16x4 − 32x3 − 12x2 + 6x + 1
12 4x2 − 3
13 64x6 + 32x5 − 80x4 − 32x3 + 24x2 + 6x − 1
14 8x3 − 4x2 − 4x + 1
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Minimal polynomial of cos(2π/8), example

The roots of 2x2 − 1 are

±
√

2/2. Clearly, cos(2π/8) =
√

2/2,
that looks fine, but one of the roots is unnecessary. Unfortunately,
by using only polynomial equations it is not possible to exclude
such extra roots.

By using the well known formula sin2 α+ cos2 α = 1 we can obtain
that sin(2π/8) = ±

√
2/2. That is fine again, but another

unnecessary root is introduced. Actually, we obtained 4 different,
undistinguishable solutions for the rotation vector
(cos(2π/8), sin(2π/8)): (±

√
2/2,±

√
2/2). The vectors can be

grouped into pairs having symmetry to the x-axis. Otherwise there
will be two substantially different solutions produced: a regular
octagon and a regular octagram (=star-regular octagon).
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An equation system
describing the vertices of the regular n-gon

Let its vertices be Pi and their coordinates (xi , yi )
(i = 0, 1, 2, . . . , n − 1).

1. Let P0 = (0, 0) and P1 = (1, 0).

2. By using consecutive rotations and assuming
x = cos(2π/n), y = sin(2π/n), we can claim that(

xi
yi

)
−
(

xi−1
yi−1

)
=

(
x −y
y x

)
·
((

xi−1
yi−1

)
−
(

xi−2
yi−2

))
and therefore

xi = −xyi−1 + xi−1 + xxi−1 + yyi−2 − xxi−2, (1)

yi = yi−1 + xyi−1 + yxi−1 − xyi−2 − yxi−2 (2)

for all i = 2, 3, . . . , n − 1.
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Example 1
Lengths in a regular pentagon (a classic result)

Theorem
Consider a regular
pentagon with vertices
P0,P1, . . . ,P4. Let
A = P0, B = P2, C = P1,
D = P3, E = P0, F = P2,
G = P1, H = P4. Let us
define diagonals
d = AB, e = CD, f =
EF , g = GH and
intersection points
R = d ∩ e,S = f ∩ g.
Now, when the length of
P0P1 is 1, then the length

of RS is 3−
√
5

2 .



Example 1
Lengths in a regular pentagon (a classic result, proof)

h1 = 4x2 + 2x − 1 = 0, (minimal polynomial of cos(2π/5))

h2 = x2 + y 2 − 1 = 0, (one possible y is sin(2π/5))

h3 = x0 = 0, (x-coordinate of P0)

h4 = y0 = 0, (y -coordinate of P0)

h5 = x1 − 1 = 0, (x-coordinate of P1)

h6 = y1 = 0, (y -coordinate of P1)

h7 = −x2 − xy1 + x1 + xx1 + yy0 − xx0 = 0,

h8 = −y2 + y1 + xy1 + yx1 − xy0 − yx0 = 0,

h9 = −x3 − xy2 + x2 + xx2 + yy1 − xx1 = 0,

h10 = −y3 + y2 + xy2 + yx2 − xy1 − yx1 = 0,

h11 = −x4 +−xy3 + x3 + xx3 + yy2 − xx2 = 0,

h12 = −y4 + y3 + xy3 + yx3 − xy2 − yx2 = 0.



Example 1
Lengths in a regular pentagon (a classic result, proof)

Since R ∈ d and R ∈ e, we can claim that

h13 =

∣∣∣∣∣∣
x0 y0 1
x2 y2 1
xr yr 1

∣∣∣∣∣∣ = 0, h14 =

∣∣∣∣∣∣
x1 y1 1
x3 y3 1
xr yr 1

∣∣∣∣∣∣ = 0,

where R = (xr , yr ). Similarly,

h15 =

∣∣∣∣∣∣
x0 y0 1
x2 y2 1
xs ys 1

∣∣∣∣∣∣ = 0, h16 =

∣∣∣∣∣∣
x1 y1 1
x4 y4 1
xs ys 1

∣∣∣∣∣∣ = 0,

where S = (xs , ys). Finally we can define the length |RS | by stating

h17 = |RS |2 −
(

(xr − xs)2 + (yr − ys)2
)

= 0.



Example 1
Lengths in a regular pentagon (a classic result, proof)

We may want to directly prove that

|RS | = 3−
√
5

2 . This actually does not follow
from the hypotheses, because the star-regular
pentagon case yields a different result.

That is, we need to prove a weaker thesis, namely that

|RS | = 3−
√
5

2 or |RS | = 3+
√
5

2 , which is equivalent to(
|RS | − 3−

√
5

2

)
·

(
|RS | − 3 +

√
5

2

)
= 0.



Example 1
Lengths in a regular pentagon (a classic result, proof)

Unfortunately, this form is still not complete, because |RS | is
defined implicitly by using |RS |2, that is, if |RS | is a root, also
−|RS | will appear. The correct form for a polynomial t that has a
root |RS | is therefore

t =

(
|RS | − 3−

√
5

2

)
·
(
|RS | − 3 +

√
5

2

)
·(

−|RS | − 3−
√
5

2

)
·
(
−|RS | − 3 +

√
5

2

)
= 0,

that is, after expansion,

t = (|RS |2−3|RS |+1)·(|RS |2+3|RS |+1) = |RS |4−7|RS |2+1 = 0.

Now, finally, the proof will be performed by showing the negation
of t. This is accomplished by adding t · z − 1 = 0 to the equation
system {h1, h2, . . . , h17} and obtaining a contradiction.



Example 1
Lengths in a regular pentagon (a classic result, proof with automated discovery )

The approach being shown is based on the Rabinowitsch trick,
introduced by Kapur in 1986.

Another option is to use elimination instead of obtaining a
contradiction. This other approach was introduced by Recio and
Vélez in 1999.
By using elimination we directly obtain that

|RS |4 − 7|RS |2 + 1 = 0.

In this case we need to factorize the result and analyze the factors.

→ https://github.com/kovzol/RegularNGons

https://github.com/kovzol/RegularNGons
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Example 2
Lengths in a regular 11-gon

Theorem
A regular 11-gon (having sides of
length 1) is given. Then:

1. b = c,

2. d = e,

3. triangles CLM and CON are
congruent,

4. a = l (that is, |AB| = |DL|).

5. Let P = BJ ∩ CD. Then
|OP| =

√
3.

6. |BO| 6= 5
3 (but it is very close

to it, |BO| ≈ 1, 66686 . . ., it is
a root of the polynomial
x10 − 16x8 + 87x6 − 208x4 +
214x2 − 67 = 0).

https://www.geogebra.org/m/

AXd5ByHX#material/YVTKjR2E
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Implementation in GeoGebra
. . .and further results

https://www.geogebra.org/m/AXd5ByHX

In case you get no answer when clicking “More. . .”, consider a
second try. There is a bug in GeoGebra—sometimes the com-
puter algebra system is not loaded automatically on the web.

A workaround: https://kovz0l.blogspot.com/2018/05/

preloading-cas-in-geogebra-applets.html.

See also https:

//github.com/kovzol/gg-art-doc/blob/master/pdf/english.pdf

for a tutorial on GeoGebra Automated Reasoning Tools and
http://www.researchinformation.co.uk/timearch/2018-02/

pageflip.html on Using Automated Reasoning Tools in GeoGebra in
the Teaching and Learning of Proving in Geometry

by K., Recio and Vélez (2017, 2018).

https://www.geogebra.org/m/AXd5ByHX
https://kovz0l.blogspot.com/2018/05/preloading-cas-in-geogebra-applets.html
https://kovz0l.blogspot.com/2018/05/preloading-cas-in-geogebra-applets.html
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How fast is it?
A simple theorem for benchmarking

Theorem
Let n be an even positive number
(n ≥ 6), and let us denote the vertices
of a regular n-gon by P0,P1, . . . ,Pn−1.
Let A = P0, B = P1, C = P2,
D = Pn/2. Moreover, let R = AB ∩ CD.
Then |AB| = |BR|.

n

t (s)

6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
0
1
2
3
4
5



Conclusion

I A method that helps obtaining various new theorems on
regular polygons, based on the work of Wu (1984),
Watkins–Zeitlin (1993) and Recio–Vélez (1999)

I Manual search

I GeoGebra implementation (based on Gröbner bases via the
Giac CAS)

I The software tool RegularNGons finds theorems
automatically by elimination
I a work in progress on approximating π is available at

https://arxiv.org/abs/1806.02218

https://arxiv.org/abs/1806.02218
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Automatic discovery of theorems in elementary geometry.
Journal of Automated Reasoning 23 (1999) 63–82



Bibliography IV

Coxeter, H.S.M.:
Regular Polytopes. 3. edn.
Dover Publications (1973)
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gg-art-doc (GeoGebra Automated Reasoning Tools. A
tutorial).
A GitHub project (2017)
https://github.com/kovzol/gg-art-doc.
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